图书介绍

LIE ALGEBRAS AND LIE GROUPS2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

LIE ALGEBRAS AND LIE GROUPS
  • 出版社: SPRINGER-VERLAG
  • ISBN:3540550089;0387550089
  • 出版时间:1992
  • 标注页数:168页
  • 文件大小:32MB
  • 文件页数:174页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

LIE ALGEBRAS AND LIE GROUPSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Part Ⅰ-Lie Algebras1

Introduction1

Chapter Ⅰ.Lie Algebras:Definition and Examples2

Chapter Ⅱ.Filtered Groups and Lie Algebras6

1.Formulae on commutators6

2.Filtration on a group7

3.Integral filtrations of a group8

4.Filtrations in GL(n)9

Exercises10

Chapter Ⅲ.Universal Algebra of a Lie Algebra11

1.Definition11

2.Functorial properties12

3.Symmetric algebra of a module12

4.Filtration of U?13

5.Diagonal map16

Exercises17

Chapter Ⅳ.Free Lie Algebras18

1.Free magmas18

2.Free algebra on X18

3.Free Lie algebra on X19

4.Relation with the free associative algebra on X20

5.P.Hall families22

6.Free groups24

7.The Campbell-Hausdorff formula26

8.Explicit formula28

Exercises29

Chapter Ⅴ.Nilpotent and Solvable Lie Algebras31

1.Complements on ?-modules31

2.Nilpotent Lie algebras32

3.Main theorems33

3.The group-theoretic analog of Engel’s theorem35

4.Solvable Lie algebras35

5.Main theorem36

5.The group theoretic analog of Lie’s theorem38

6.Lemmas on endomorphisms40

7.Cartan’s criterion42

Exercises43

Chapter Ⅵ.Semisimple Lie Algebras44

1.The radical44

2.Semisimple Lie algebras44

3.Complete reducibility45

4.Levi’s theorem48

5.Complete reducibility continued50

6.Connection with compact Lie groups over R and C53

Exercises54

Chapter Ⅶ.Representations of s?n56

1.Notations56

2.Weights and primitive elements57

3.Irreducible ?-modules58

4.Determination of the highest weights59

Exercises61

Part Ⅱ-Lie Groups63

Introduction63

Chapter Ⅰ.Complete Fields64

Chapter Ⅱ.Analytic Functions67

“Tournants dangereux”75

Chapter Ⅲ.Analytic Manifolds76

1.Charts and atlases76

2.Definition of analytic manifolds77

3.Topological properties of manifolds77

4.Elementary examples of manifolds78

5.Morphisms78

6.Products and sums79

7.Germs of analytic functions80

8.Tangent and cotangent spaces81

9.Inverse function theorem83

10.Immersions,submersions,and subimmersions83

11.Construction of manifolds:inverse images87

12.Construction of manifolds:quotients92

Exercises95

Appendix 1.A non-regular Hausdorff manifold96

Appendix 2.Structure of p-adic manifolds97

Appendix 3.The transfinite p-adic line101

Chapter Ⅳ.Analytic Groups102

1.Definition of analytic groups102

2.Elementary examples of analytic groups103

3.Group chunks105

4.Prolongation of subgroup chunks106

5.Homogeneous spaces and orbits108

6.Formal groups:definition and elementary examples111

7.Formal groups:formulae113

8.Formal groups over a complete valuation ring116

9.Filtrations on standard groups117

Exercises120

Appendix 1.Maximal compact subgroups of GL(n,k)121

Appendix 2.Some convergence lemmas122

Appendix 3.Applications of §9:“Filtrations on standard groups”124

Chapter Ⅴ.Lie Theory129

1.The Lie algebra of an analytic group chunk129

2.Elementary examples and properties130

3.Linear representations131

4.The convergence of the Campbell-Hausdorff formula136

5.Point distributions141

6.The bialgebra associated to a formal group143

7.The convergence of formal homomorphisms149

8.The third theorem of Lie152

9.Cartan’s theorems155

Exercises157

Appendix.Existence theorem for ordinary differential equations158

Bibliography161

Problem163

Index165

热门推荐