图书介绍

PHYSICAL METALLURGY PRINCIPLES FOURTH EDITION2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

PHYSICAL METALLURGY PRINCIPLES FOURTH EDITION
  • REZA ABBASCHIAN 著
  • 出版社: CENGAGE LEARNING
  • ISBN:0495438510
  • 出版时间:2010
  • 标注页数:750页
  • 文件大小:100MB
  • 文件页数:765页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

PHYSICAL METALLURGY PRINCIPLES FOURTH EDITIONPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 THE STRUCTURE OF METALS1

1.1 The Structure of Metals1

1.2 Unit Cells2

1.3 The Body-Centered Cubic Structure BCC3

1.4 Coordination Number of the Body-Centered Cubic Lattice4

1.5 The Face-Centered Cubic Lattice FCC4

1.6 The Unit Cell of the Hexagonal Closed-Packed HCP Lattice5

1.7 Comparison of the Face-Centered Cubic and Close-Packed Hexagonal Structures6

1.8 Coordination Number of the Systems of Closest Packing7

1.9 Anisotropy7

1.10 Textures or Preferred Orientations8

1.11 Miller Indices9

1.12 Crystal Structures of the Metallic Elements14

1.13 The Stereographic Projection15

1.14 Directions that Lie in a Plane16

1.15 Planes of a Zone17

1.16 The Wulff Net17

1.17 Standard Projections21

1.18 The Standard Stereographic Triangle for Cubic Crystals24

Problems26

References28

CHAPTER 2 CHARACTERIZATION TECHNIQUES29

2.1 The Bragg Law30

2.2 Laue Techniques33

2.3 The Rotating-Crystal Method35

2.4 The Debye-Scherrer or Powder Method36

2.5 The X-Ray Diffractometer39

2.6 The Transmission Electron Microscope40

2.7 Interactions Between the Electrons in an Electron Beam and a Metallic Specimen46

2.8 Elastic Scattering46

2.9 Inelastic Scattering46

2.10 Electron Spectrum48

2.11 The Scanning Electron Microscope48

2.12 Topographic Contrast50

2.13 The Picture Element Size53

2.14 The Depth of Focus54

2.15 Microanalysis of Specimens55

2.16 Electron Probe X-Ray Microanalysis55

2.17 The Characteristic X-Rays56

2.18 Auger Electron Spectroscopy AES58

2.19 The Scanning Transmission Electron Microscope STEM60

Problems60

References61

CHAPTER 3 CRYSTAL BINDING62

3.1 The Internal Energy of a Crystal62

3.2 Ionic Crystals62

3.3 The Born Theory of Ionic Crystals63

3.4 Van Der Waals Crystals68

3.5 Dipoles68

3.6 Inert Cases69

3.7 Induced Dipoles70

3.8 The Lattice Energy of an Inert-Gas Solid71

3.9 The Debye Frequency72

3.10 The Zero-Point Energy73

3.11 Dipole- Quadrupole and Quadrupole-Quadrupole Terms75

3.12 Molecular Crystals75

3.13 Refinements to the Born Theory of Ionic Crystals75

3.14 Covalent and Metallic Bonding 76 Problems 80 References81

CHAPTER 4 INTRODUCTION TO DISLOCATIONS82

4.1 The Discrepancy Between the Theoretical and Observed Yield Stresses of Crystals82

4.2 Dislocations85

4.3 The Burgers Vector93

4.4 Vector Notation for Dislocations95

4.5 Dislocations in the Face-Centered Cubic Lattice96

4.6 Intrinsic and Extrinsic Stacking Faults in Face-Centered Cubic Metals101

4.7 Extended Dislocations in Hexagonal Metals102

4.8 Climb of Edge Dislocations102

4.9 Dislocation Intersections104

4.10 The Stress Field of a Screw Dislocation107

4.11 The Stress Field of an Edge Dislocation109

4.12 The Force on a Dislocation111

4.13 The Strain Energy of a Screw Dislocation114

4.14 The Strain Energy of an Edge Dislocation115

Problems116

References118

CHAPTER 5 DISLOCATIONS AND PLASTIC DEFORMATION119

5.1 The Frank-Read Source119

5.2 Nucleation of Dislocations120

5.3 Bend Gliding123

5.4 Rotational Slip125

5.5 Slip Planes and Slip Directions127

5.6 Slip Systems129

5.7 Critical Resolved Shear Stress129

5.8 Slip on Equivalent Slip Systems133

5.9 The Dislocation Density133

5.10 Slip Systems in Different Crystal Forms133

5.11 Cross-Slip138

5.12 Slip Bands141

5.13 Double Cross-Slip141

5.14 Extended Dislocations and Cross-Slip143

5.15 Crystal Structure Rotation During Tensile and Compressive Deformation144

5.16 The Notation for the Slip Systems in the Deformation of FCC Crystals147

5.17 Work Hardening149

5.18Considres Criterion150

5.19 The Relation Between Dislocation Density and the Stress151

5.20 Taylors Relation153

5.21 The Orowan Equation153

Problems154

References157

CHAPTER 6 ELEMENTS OF GRAIN BOUNDARIES158

6.1 Grain Boundaries158

6.2 Dislocation Model of a Small-Angle Grain Boundary159

6.3 The Five Degrees of Freedom of a Grain Boundary161

6.4 The Stress Field of a Grain Boundary162

6.5 Grain-Boundary Energy165

6.6 Low-Energy Dislocation Structures LEDS167

6.7 Dynamic Recovery170

6.8 Surface Tension of the Grain Boundary172

6.9 Boundaries Between Crystals of Different Phases175

6.10 The Grain Size178

6.11 The Effect of Grain Boundaries on Mechanical PropertiesHall-Petch Relation180

6.12 Grain Size Effects in Nanocrystalline Materials182

6.13 Coincidence Site Boundaries185

6.14 The Density of Coincidence Sites186

6.15 The Ranganathan Relations186

6.16 Examples Involving Twist Boundaries187

6.17 Tilt Boundaries189

Problems192

References193

CHAPTER 7 VACANCIES194

7.1 Thermal Behavior of Metals194

7.2 Internal Energy195

7.3 Entropy196

7.4 Spontaneous Reactions196

7.5 Gibbs Free Energy197

7.6 Statistical Mechanical Definition of Entropy199

7.7 Vacancies203

7.8 Vacancy Motion209

7.9 Interstitial Atoms and Divacancies211

Problems214

References215

CHAPTER 8 ANNEALING216

8.1 Stored Energy of Cold Work216

8.2 The Relationship of Free Energy to Strain Energy217

8.3 The Release of Stored Energy218

8.4 Recovery220

8.5 Recovery in Single Crystals221

8.6 Polygonization223

8.7 Dislocation Movements in Polygonization226

8.8 Recovery Processes at High and Low Temperatures229

8.9 Recrystallization230

8.10 The Effect of Time and Temperature on Recrystallization230

8.11 Re crystallization Temperature232

8.12 The Effect of Strain on Recrystallization233

8.13 The Rate of Nucleation and the Rate of Nucleus Growth234

8.14 Formation of Nuclei235

8.15 Driving Force for Recrystallization237

8.16 The Recrystallized Grain Size237

8.17 Other Variables in Recrystallization239

8.18 Purity of the Metal239

8.19 Initial Grain Size240

8.20 Grain Growth240

8.21 Geometrical Coalescence243

8.22 Three-Dimensional Changes in Grain Geometry244

8.23 The Grain Growth Law245

8.24 Impurity Atoms in Solid Solution249

8.25 Impurities in the Form of Inclusions250

8.26 The Free-Surface Effects253

8.27 The Limiting Grain Size254

8.28 Preferred Orientation256

8.29 Secondary Recrystallization256

8.30 Strain-Induced Boundary Migration257

Problems258

References259

CHAPTER 9 SOLID SOLUTIONS261

9.1 Solid Solutions261

9.2 Intermediate Phases261

9.3 Interstitial Solid Solutions262

9.4 Solubility of Carbon in Body-Centered Cubic Iron263

9.5 Substitutional Solid Solutions and the Hume-Rothery Rules267

9.6 Interaction of Dislocations and Solute Atoms267

9.7 Dislocation Atmospheres268

9.8 The Formation of a Dislocation Atmosphere269

9.9 The Evaluation of A270

9.10 The Drag of Atmospheres on Moving Dislocations271

9.11 The Sharp Yield Point and Lders Bands273

9.12 The Theory of the Sharp Yield Point275

9.13 Strain Aging276

9.14 The Cottrell-Bilby Theory of Strain Aging277

9.15 Dynamic Strain Aging282

Problems285

References286

CHAPTER 10 PHASES287

10.1 Basic Definitions287

10.2 The Physical Nature of Phase Mixtures289

10.3 Thermodynamics of Solutions289

10.4 Equilibrium Between Two Phases292

10.5 The Number of Phases in an Alloy System293

10.6 Two-Component Systems Containing Two Phases303

10.7 Graphical Determinations of Partial-Molal Free Energies304

10.8 Two-Component Systems with Three Phases in Equilibrium306

10.9 The Phase Rule307

10.10 Ternary Systems309

Problems310

References311

CHAPTER 11 BINARY PHASE DIAGRAMS312

11.1 Phase Diagrams312

11.2 Isornorphous Alloy Systems312

11.3 The Lever Rule314

11.4 Equilibrium Heating or Cooling of an Isomorphous Alloy317

11.5 The Isomorphous Alloy System from the Point of View of Free Energy319

11.6 Maxima and Minima320

11.7 Superlattices322

11.8 Miscibility Gaps326

11.9 Eutectic Systems328

11.10 The Microstructures of Eutectic Systems329

11.11 The Peritectic Transformation334

11.12 Monotectics337

11.13 Other Three-Phase Reactions338

11.14 Intermediate Phases339

11.15 The Copper-Zinc Phase Diagram341

11.16 Ternary Phase Diagrams343

Problems346

References347

CHAPTER 12 DIFFUSION IN SUBSTITUTIONAL SOLID SOLUTIONS348

12.1 Diffusion in an Ideal Solution348

12.2 The Kirkendall Effect352

12.3 Pore Formation355

12.4 Darkens Equations357

12.5 Ficks Second Law360

12.6 The Matano Method363

12.7 Determination of the Intrinsic Diffusivities366

12.8 Self-Diffusion in Pure Metals368

12.9 Temperature Dependence of the Diffusion Coefficient370

12.10 Chemical Diffusion at Low-Solute Concentration372

12.11 The Study of Chemical Diffusion Using Radioactive Tracers374

12.12 Diffusion Along Grain Boundaries and Free Surfaces377

12.13 Ficks First Law in Terms of a Mobility and an Effective Force380

12.14 Diffusion in Non-Isomorphic Alloy Systems382

Problems386

References388

CHAPTER 13 INTERSTITIAL DIFFUSION389

13.1 Measurement of Interstitial Diffusivities389

13.2 The Snoek Effect391

13.3 Experimental Determination of the Relaxation Time398

13.4Experimental Data405

13.5 Anelastic Measurements at Constant Strain405

Problems406

References407

CHAPTER 14 SOLIDIFICATION OF METALS408

14.1 The Liquid Phase408

14.2 Nucleation411

14.3 Metallic Glasses413

14.4 Crystal Growth from the Liquid Phase420

14.5 The Heats of Fusion and Vaporization421

14.6 The Nature of the Liquid-Solid Interface423

14.7 Continuous Growth425

14.8 Lateral Growth427

14.9 Stable Interface Freezing428

14.10 Dendritic Growth in Pure Metals429

14.11 Freezing in Alloys with Planar Interface432

14.12 The Scheil Equation434

14.13 Dendritic Freezing in Alloys437

14.14 Freezing of Ingots439

14.15 The Grain Size of Castings443

14.16 Segregation443

14.17 Homogenization445

14.18 Inverse Segregation450

14.19 Porosity450

14.20 Eutectic Freezing454

Problems459

References461

CHAPTER 15 NUCLEATION AND GROWTH KINETICS463

15.1 Nucleation of a Liquid from the Vapor,463

15.2 The Becker-D?ring Theory,471

15.3 Freezing,473

15.4 Solid-State Reactions,475

15.5 Heterogeneous Nucleation,478

15.6 Growth Kinetics,481

15.7Diffusion Controlled Growth,484

15.8 Interference of Growing Precipitate Particles,488

15.9 Interface Controlled Growth,488

15.10 Transformations That Occur on Heating,492

15.11 Dissolution of a Precipitate,493

Problems,495

References,497

CHAPTER 16 PRECIPITATION HARDENING498

16.1 The Significance of the Solvus Curve,499

16.2 The Solution Treatment,500

16.3 The Aging Treatment,500

16.4 Development of Precipitates,503

16.5 Aging of Al-Cu Alloys at Temperatures Above 100℃ (373 K),506

16.6 Precipitation Sequences in Other Aluminum Alloys,509

16.7Homogeneous Versus Heterogeneous Nucleation of Precipitates,511

16.8 Interphase Precipitation,512

16.9 Theories of Hardening,515

16.10 Additional Factors in Precipitation Hardening,516

Problems,518

References,519

CHAPTER 17 DEFORMATION TWINNING AND MARTENSITE REACTIONS521

17.1 Deformation Twinning,521

17.2 Formal Crystallographic Theory of Twinning,524

17.3 Twin Boundaries,530

17.4 Twin Growth,531

17.5 Accommodation of the Twinning Shear,533

17.6 The Significance of Twinning in Plastic Deformation,534

17.7 The Effect of Twinning on Face-Centered Cubic Stress-Strain Curves,535

17.8 Martensite,537

17.9 The Bain Distortion,538

17.10 The Martensite Transformation in an Indium-Thallium Alloy,540

17.11 Reversibility of the Martensite Transformation,541

17.12 Athermal Transformation,541

17.13 Phenomenological Crystallographic Theory of Martensite Formation,542

17.14 Irrational Nature of the Habit Plane,548

17.15 The Iron-Nickel Martensitic Transformation,549

17.16 Isothermal Formation of Martensite,551

17.17 Stabilization,551

17.18 Nucleation of Martensite Plates,552

17.19 Growth of Martensite Plates,553

17.20 The Effect of Stress,553

17.21 The Effect of Plastic Deformation,554

17.22 Thermoelastic Martensite Transformations,554

17.23 Elastic Deformation of Thermoelastic Alloys,556

17.24 Stress-Induced Martensite (SIM),556

17.25 The Shape-Memory Effect,557

Problems,559

References,560

CHAPTER 18 THE IRON-CARBON ALLOY SYSTEM562

18.1 The Iron-Carbon Diagram,562

18.2 The Proeutectoid Transformations of Austenite,565

18.3 The Transformation of Austenite to Pearlite,566

18.4 The Growth of Pearlite,572

18.5 The Effect of Temperature on the Pearlite Transformation573

18.6 Forced-Velocity Growth of Pearlite575

18.7 The Effects of Alloying Elements on the Growth of Pearlite578

18.8 The Rate of Nucleation of Pearlite581

18.9 Time-Temperature-Transformation Curves583

18.10 The Bainite Reaction584

18.11 The Complete T-T-T Diagram of an Eutectoid Steel591

18.12 Slowly Cooled Hypoeutectoid Steels593

18.13 Slowly Cooled Hypereutectoid Steels595

18.14 Isothermal Transformation Diagrams for Noneutectoid Steels597

Problems600

References602

CHAPTER 19 THE HARDENING OF STEEL603

19.1 Continuous Cooling Transformations CCT603

19.2 Hardenability606

19.3 The Variables that Determine the Hardenability of a Steel614

19.4 Austenitic Grain Size614

19.5 The Effect of Austenitic Grain Size on Hardenability615

19.6 The Influence of Carbon Content on Hardenability615

19.7 The Influence of Alloying Elements on Hardenability616

19.8 The Significance of Hardenability621

19.9 The Martensite Transformation in Steel622

19.10 The Hardness of Iron-Carbon Martensite627

19.11 Dimensional Changes Associated with Transformation of Martensite631

19.12 Quench Cracks632

19.13 Tempering633

19.14Tempering of a Low-Carbon Steel639

19.15 Spheroidized Cementite641

19.16 The Effect of Tempering on Physical Properties643

19.17 The Interrelation Between Time and Temperature in Tempering646

19.18Secondary Hardening646

Problems647

References649

CHAPTER 20 SELECTED NONFERROUS ALLOY SYSTEMS651

20.1 Commercially Pure Copper651

20.2 Copper Alloys654

20.3 Copper Beryllium658

20.4 Other Copper Alloys659

20.5 Aluminum Alloys659

20.6 Aluminum-Lithium Alloys660

20.7 Titanium Alloys668

20.8 Classification of Titanium Alloys670

20.9 The Alpha Alloys670

20.10 The Beta Alloys676

20.11 The Alpha-Beta Alloys677

20.12 Superalloys679

20.13 Creep Strength680

Problems683

References684

CHAPTER 21 FAILURE OF METALS686

21.1 Failure by Easy Glide686

21.2 Rupture by Necking Multiple Glide688

21.3 The Effect of Twinning689

21.4 Cleavage690

21.5 The Nucleation of Cleavage Cracks691

21.6 Propagation of Cleavage Cracks693

21.7 The Effect of Grain Boundaries696

21.8 The Effect of the State of Stress698

21.9 Ductile Fractures700

21.10 Intercrystalline Brittle Fracture705

21.11 Blue Brittleness705

21.12 Fatigue Failures706

21.13 The Macroscopic Character of Fatigue Failure706

21.14 The Rotating-Beam Fatigue Test708

21.15 Alternating Stress Parameters710

21.16 The Microscopic Aspects of Fatigue Failure713

21.17 Fatigue Crack Growth717

21.18 The Effect of Nonmetallic Inclusions720

21.19 The Effect of Steel Microstructure on Fatigue721

21.20 Low-Cycle Fatigue721

21.21 The Coffin-Manson Equation726

21.22 Certain Practical Aspects of Fatigue727

Problems728

References729

APPENDICES731

A ANGLES BETWEEN CRYSTALLOGRAPHIC PLANES IN THE CUBIC SYSTEM IN DEGREES731

B ANGLES BETWEEN CRYSTALLOGRAPHIC PLANES FOR HEXAGONAL ELEMENTS733

C INDICES OF THE REFLECTING PLANES FOR CUBIC STRUCTURES734

D CONVERSION FACTORS AND CONSTANTS734

E TWINNING ELEMENTS OF SEVERAL OF THE MORE IMPORTANT TWINNING MODES735

F SELECTED VALUES OF INTRINSIC STACKING-FAULT ENERGY ITWIN-BOUNDARY ENERGY T GRAIN-BOUNDARY ENERGY GAND CRYSTAL-VAPOR SURFACE ENERGY FOR VARIOUS MATERIALS IN ERGS/CM2735

LIST OF IMPORTANT SYMBOLS737

LIST OF GREEK LETTER SYMBOLS739

INDEX740

热门推荐