图书介绍
PHYSICAL METALLURGY PRINCIPLES FOURTH EDITION2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- REZA ABBASCHIAN 著
- 出版社: CENGAGE LEARNING
- ISBN:0495438510
- 出版时间:2010
- 标注页数:750页
- 文件大小:100MB
- 文件页数:765页
- 主题词:
PDF下载
下载说明
PHYSICAL METALLURGY PRINCIPLES FOURTH EDITIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 THE STRUCTURE OF METALS1
1.1 The Structure of Metals1
1.2 Unit Cells2
1.3 The Body-Centered Cubic Structure BCC3
1.4 Coordination Number of the Body-Centered Cubic Lattice4
1.5 The Face-Centered Cubic Lattice FCC4
1.6 The Unit Cell of the Hexagonal Closed-Packed HCP Lattice5
1.7 Comparison of the Face-Centered Cubic and Close-Packed Hexagonal Structures6
1.8 Coordination Number of the Systems of Closest Packing7
1.9 Anisotropy7
1.10 Textures or Preferred Orientations8
1.11 Miller Indices9
1.12 Crystal Structures of the Metallic Elements14
1.13 The Stereographic Projection15
1.14 Directions that Lie in a Plane16
1.15 Planes of a Zone17
1.16 The Wulff Net17
1.17 Standard Projections21
1.18 The Standard Stereographic Triangle for Cubic Crystals24
Problems26
References28
CHAPTER 2 CHARACTERIZATION TECHNIQUES29
2.1 The Bragg Law30
2.2 Laue Techniques33
2.3 The Rotating-Crystal Method35
2.4 The Debye-Scherrer or Powder Method36
2.5 The X-Ray Diffractometer39
2.6 The Transmission Electron Microscope40
2.7 Interactions Between the Electrons in an Electron Beam and a Metallic Specimen46
2.8 Elastic Scattering46
2.9 Inelastic Scattering46
2.10 Electron Spectrum48
2.11 The Scanning Electron Microscope48
2.12 Topographic Contrast50
2.13 The Picture Element Size53
2.14 The Depth of Focus54
2.15 Microanalysis of Specimens55
2.16 Electron Probe X-Ray Microanalysis55
2.17 The Characteristic X-Rays56
2.18 Auger Electron Spectroscopy AES58
2.19 The Scanning Transmission Electron Microscope STEM60
Problems60
References61
CHAPTER 3 CRYSTAL BINDING62
3.1 The Internal Energy of a Crystal62
3.2 Ionic Crystals62
3.3 The Born Theory of Ionic Crystals63
3.4 Van Der Waals Crystals68
3.5 Dipoles68
3.6 Inert Cases69
3.7 Induced Dipoles70
3.8 The Lattice Energy of an Inert-Gas Solid71
3.9 The Debye Frequency72
3.10 The Zero-Point Energy73
3.11 Dipole- Quadrupole and Quadrupole-Quadrupole Terms75
3.12 Molecular Crystals75
3.13 Refinements to the Born Theory of Ionic Crystals75
3.14 Covalent and Metallic Bonding 76 Problems 80 References81
CHAPTER 4 INTRODUCTION TO DISLOCATIONS82
4.1 The Discrepancy Between the Theoretical and Observed Yield Stresses of Crystals82
4.2 Dislocations85
4.3 The Burgers Vector93
4.4 Vector Notation for Dislocations95
4.5 Dislocations in the Face-Centered Cubic Lattice96
4.6 Intrinsic and Extrinsic Stacking Faults in Face-Centered Cubic Metals101
4.7 Extended Dislocations in Hexagonal Metals102
4.8 Climb of Edge Dislocations102
4.9 Dislocation Intersections104
4.10 The Stress Field of a Screw Dislocation107
4.11 The Stress Field of an Edge Dislocation109
4.12 The Force on a Dislocation111
4.13 The Strain Energy of a Screw Dislocation114
4.14 The Strain Energy of an Edge Dislocation115
Problems116
References118
CHAPTER 5 DISLOCATIONS AND PLASTIC DEFORMATION119
5.1 The Frank-Read Source119
5.2 Nucleation of Dislocations120
5.3 Bend Gliding123
5.4 Rotational Slip125
5.5 Slip Planes and Slip Directions127
5.6 Slip Systems129
5.7 Critical Resolved Shear Stress129
5.8 Slip on Equivalent Slip Systems133
5.9 The Dislocation Density133
5.10 Slip Systems in Different Crystal Forms133
5.11 Cross-Slip138
5.12 Slip Bands141
5.13 Double Cross-Slip141
5.14 Extended Dislocations and Cross-Slip143
5.15 Crystal Structure Rotation During Tensile and Compressive Deformation144
5.16 The Notation for the Slip Systems in the Deformation of FCC Crystals147
5.17 Work Hardening149
5.18Considres Criterion150
5.19 The Relation Between Dislocation Density and the Stress151
5.20 Taylors Relation153
5.21 The Orowan Equation153
Problems154
References157
CHAPTER 6 ELEMENTS OF GRAIN BOUNDARIES158
6.1 Grain Boundaries158
6.2 Dislocation Model of a Small-Angle Grain Boundary159
6.3 The Five Degrees of Freedom of a Grain Boundary161
6.4 The Stress Field of a Grain Boundary162
6.5 Grain-Boundary Energy165
6.6 Low-Energy Dislocation Structures LEDS167
6.7 Dynamic Recovery170
6.8 Surface Tension of the Grain Boundary172
6.9 Boundaries Between Crystals of Different Phases175
6.10 The Grain Size178
6.11 The Effect of Grain Boundaries on Mechanical PropertiesHall-Petch Relation180
6.12 Grain Size Effects in Nanocrystalline Materials182
6.13 Coincidence Site Boundaries185
6.14 The Density of Coincidence Sites186
6.15 The Ranganathan Relations186
6.16 Examples Involving Twist Boundaries187
6.17 Tilt Boundaries189
Problems192
References193
CHAPTER 7 VACANCIES194
7.1 Thermal Behavior of Metals194
7.2 Internal Energy195
7.3 Entropy196
7.4 Spontaneous Reactions196
7.5 Gibbs Free Energy197
7.6 Statistical Mechanical Definition of Entropy199
7.7 Vacancies203
7.8 Vacancy Motion209
7.9 Interstitial Atoms and Divacancies211
Problems214
References215
CHAPTER 8 ANNEALING216
8.1 Stored Energy of Cold Work216
8.2 The Relationship of Free Energy to Strain Energy217
8.3 The Release of Stored Energy218
8.4 Recovery220
8.5 Recovery in Single Crystals221
8.6 Polygonization223
8.7 Dislocation Movements in Polygonization226
8.8 Recovery Processes at High and Low Temperatures229
8.9 Recrystallization230
8.10 The Effect of Time and Temperature on Recrystallization230
8.11 Re crystallization Temperature232
8.12 The Effect of Strain on Recrystallization233
8.13 The Rate of Nucleation and the Rate of Nucleus Growth234
8.14 Formation of Nuclei235
8.15 Driving Force for Recrystallization237
8.16 The Recrystallized Grain Size237
8.17 Other Variables in Recrystallization239
8.18 Purity of the Metal239
8.19 Initial Grain Size240
8.20 Grain Growth240
8.21 Geometrical Coalescence243
8.22 Three-Dimensional Changes in Grain Geometry244
8.23 The Grain Growth Law245
8.24 Impurity Atoms in Solid Solution249
8.25 Impurities in the Form of Inclusions250
8.26 The Free-Surface Effects253
8.27 The Limiting Grain Size254
8.28 Preferred Orientation256
8.29 Secondary Recrystallization256
8.30 Strain-Induced Boundary Migration257
Problems258
References259
CHAPTER 9 SOLID SOLUTIONS261
9.1 Solid Solutions261
9.2 Intermediate Phases261
9.3 Interstitial Solid Solutions262
9.4 Solubility of Carbon in Body-Centered Cubic Iron263
9.5 Substitutional Solid Solutions and the Hume-Rothery Rules267
9.6 Interaction of Dislocations and Solute Atoms267
9.7 Dislocation Atmospheres268
9.8 The Formation of a Dislocation Atmosphere269
9.9 The Evaluation of A270
9.10 The Drag of Atmospheres on Moving Dislocations271
9.11 The Sharp Yield Point and Lders Bands273
9.12 The Theory of the Sharp Yield Point275
9.13 Strain Aging276
9.14 The Cottrell-Bilby Theory of Strain Aging277
9.15 Dynamic Strain Aging282
Problems285
References286
CHAPTER 10 PHASES287
10.1 Basic Definitions287
10.2 The Physical Nature of Phase Mixtures289
10.3 Thermodynamics of Solutions289
10.4 Equilibrium Between Two Phases292
10.5 The Number of Phases in an Alloy System293
10.6 Two-Component Systems Containing Two Phases303
10.7 Graphical Determinations of Partial-Molal Free Energies304
10.8 Two-Component Systems with Three Phases in Equilibrium306
10.9 The Phase Rule307
10.10 Ternary Systems309
Problems310
References311
CHAPTER 11 BINARY PHASE DIAGRAMS312
11.1 Phase Diagrams312
11.2 Isornorphous Alloy Systems312
11.3 The Lever Rule314
11.4 Equilibrium Heating or Cooling of an Isomorphous Alloy317
11.5 The Isomorphous Alloy System from the Point of View of Free Energy319
11.6 Maxima and Minima320
11.7 Superlattices322
11.8 Miscibility Gaps326
11.9 Eutectic Systems328
11.10 The Microstructures of Eutectic Systems329
11.11 The Peritectic Transformation334
11.12 Monotectics337
11.13 Other Three-Phase Reactions338
11.14 Intermediate Phases339
11.15 The Copper-Zinc Phase Diagram341
11.16 Ternary Phase Diagrams343
Problems346
References347
CHAPTER 12 DIFFUSION IN SUBSTITUTIONAL SOLID SOLUTIONS348
12.1 Diffusion in an Ideal Solution348
12.2 The Kirkendall Effect352
12.3 Pore Formation355
12.4 Darkens Equations357
12.5 Ficks Second Law360
12.6 The Matano Method363
12.7 Determination of the Intrinsic Diffusivities366
12.8 Self-Diffusion in Pure Metals368
12.9 Temperature Dependence of the Diffusion Coefficient370
12.10 Chemical Diffusion at Low-Solute Concentration372
12.11 The Study of Chemical Diffusion Using Radioactive Tracers374
12.12 Diffusion Along Grain Boundaries and Free Surfaces377
12.13 Ficks First Law in Terms of a Mobility and an Effective Force380
12.14 Diffusion in Non-Isomorphic Alloy Systems382
Problems386
References388
CHAPTER 13 INTERSTITIAL DIFFUSION389
13.1 Measurement of Interstitial Diffusivities389
13.2 The Snoek Effect391
13.3 Experimental Determination of the Relaxation Time398
13.4Experimental Data405
13.5 Anelastic Measurements at Constant Strain405
Problems406
References407
CHAPTER 14 SOLIDIFICATION OF METALS408
14.1 The Liquid Phase408
14.2 Nucleation411
14.3 Metallic Glasses413
14.4 Crystal Growth from the Liquid Phase420
14.5 The Heats of Fusion and Vaporization421
14.6 The Nature of the Liquid-Solid Interface423
14.7 Continuous Growth425
14.8 Lateral Growth427
14.9 Stable Interface Freezing428
14.10 Dendritic Growth in Pure Metals429
14.11 Freezing in Alloys with Planar Interface432
14.12 The Scheil Equation434
14.13 Dendritic Freezing in Alloys437
14.14 Freezing of Ingots439
14.15 The Grain Size of Castings443
14.16 Segregation443
14.17 Homogenization445
14.18 Inverse Segregation450
14.19 Porosity450
14.20 Eutectic Freezing454
Problems459
References461
CHAPTER 15 NUCLEATION AND GROWTH KINETICS463
15.1 Nucleation of a Liquid from the Vapor,463
15.2 The Becker-D?ring Theory,471
15.3 Freezing,473
15.4 Solid-State Reactions,475
15.5 Heterogeneous Nucleation,478
15.6 Growth Kinetics,481
15.7Diffusion Controlled Growth,484
15.8 Interference of Growing Precipitate Particles,488
15.9 Interface Controlled Growth,488
15.10 Transformations That Occur on Heating,492
15.11 Dissolution of a Precipitate,493
Problems,495
References,497
CHAPTER 16 PRECIPITATION HARDENING498
16.1 The Significance of the Solvus Curve,499
16.2 The Solution Treatment,500
16.3 The Aging Treatment,500
16.4 Development of Precipitates,503
16.5 Aging of Al-Cu Alloys at Temperatures Above 100℃ (373 K),506
16.6 Precipitation Sequences in Other Aluminum Alloys,509
16.7Homogeneous Versus Heterogeneous Nucleation of Precipitates,511
16.8 Interphase Precipitation,512
16.9 Theories of Hardening,515
16.10 Additional Factors in Precipitation Hardening,516
Problems,518
References,519
CHAPTER 17 DEFORMATION TWINNING AND MARTENSITE REACTIONS521
17.1 Deformation Twinning,521
17.2 Formal Crystallographic Theory of Twinning,524
17.3 Twin Boundaries,530
17.4 Twin Growth,531
17.5 Accommodation of the Twinning Shear,533
17.6 The Significance of Twinning in Plastic Deformation,534
17.7 The Effect of Twinning on Face-Centered Cubic Stress-Strain Curves,535
17.8 Martensite,537
17.9 The Bain Distortion,538
17.10 The Martensite Transformation in an Indium-Thallium Alloy,540
17.11 Reversibility of the Martensite Transformation,541
17.12 Athermal Transformation,541
17.13 Phenomenological Crystallographic Theory of Martensite Formation,542
17.14 Irrational Nature of the Habit Plane,548
17.15 The Iron-Nickel Martensitic Transformation,549
17.16 Isothermal Formation of Martensite,551
17.17 Stabilization,551
17.18 Nucleation of Martensite Plates,552
17.19 Growth of Martensite Plates,553
17.20 The Effect of Stress,553
17.21 The Effect of Plastic Deformation,554
17.22 Thermoelastic Martensite Transformations,554
17.23 Elastic Deformation of Thermoelastic Alloys,556
17.24 Stress-Induced Martensite (SIM),556
17.25 The Shape-Memory Effect,557
Problems,559
References,560
CHAPTER 18 THE IRON-CARBON ALLOY SYSTEM562
18.1 The Iron-Carbon Diagram,562
18.2 The Proeutectoid Transformations of Austenite,565
18.3 The Transformation of Austenite to Pearlite,566
18.4 The Growth of Pearlite,572
18.5 The Effect of Temperature on the Pearlite Transformation573
18.6 Forced-Velocity Growth of Pearlite575
18.7 The Effects of Alloying Elements on the Growth of Pearlite578
18.8 The Rate of Nucleation of Pearlite581
18.9 Time-Temperature-Transformation Curves583
18.10 The Bainite Reaction584
18.11 The Complete T-T-T Diagram of an Eutectoid Steel591
18.12 Slowly Cooled Hypoeutectoid Steels593
18.13 Slowly Cooled Hypereutectoid Steels595
18.14 Isothermal Transformation Diagrams for Noneutectoid Steels597
Problems600
References602
CHAPTER 19 THE HARDENING OF STEEL603
19.1 Continuous Cooling Transformations CCT603
19.2 Hardenability606
19.3 The Variables that Determine the Hardenability of a Steel614
19.4 Austenitic Grain Size614
19.5 The Effect of Austenitic Grain Size on Hardenability615
19.6 The Influence of Carbon Content on Hardenability615
19.7 The Influence of Alloying Elements on Hardenability616
19.8 The Significance of Hardenability621
19.9 The Martensite Transformation in Steel622
19.10 The Hardness of Iron-Carbon Martensite627
19.11 Dimensional Changes Associated with Transformation of Martensite631
19.12 Quench Cracks632
19.13 Tempering633
19.14Tempering of a Low-Carbon Steel639
19.15 Spheroidized Cementite641
19.16 The Effect of Tempering on Physical Properties643
19.17 The Interrelation Between Time and Temperature in Tempering646
19.18Secondary Hardening646
Problems647
References649
CHAPTER 20 SELECTED NONFERROUS ALLOY SYSTEMS651
20.1 Commercially Pure Copper651
20.2 Copper Alloys654
20.3 Copper Beryllium658
20.4 Other Copper Alloys659
20.5 Aluminum Alloys659
20.6 Aluminum-Lithium Alloys660
20.7 Titanium Alloys668
20.8 Classification of Titanium Alloys670
20.9 The Alpha Alloys670
20.10 The Beta Alloys676
20.11 The Alpha-Beta Alloys677
20.12 Superalloys679
20.13 Creep Strength680
Problems683
References684
CHAPTER 21 FAILURE OF METALS686
21.1 Failure by Easy Glide686
21.2 Rupture by Necking Multiple Glide688
21.3 The Effect of Twinning689
21.4 Cleavage690
21.5 The Nucleation of Cleavage Cracks691
21.6 Propagation of Cleavage Cracks693
21.7 The Effect of Grain Boundaries696
21.8 The Effect of the State of Stress698
21.9 Ductile Fractures700
21.10 Intercrystalline Brittle Fracture705
21.11 Blue Brittleness705
21.12 Fatigue Failures706
21.13 The Macroscopic Character of Fatigue Failure706
21.14 The Rotating-Beam Fatigue Test708
21.15 Alternating Stress Parameters710
21.16 The Microscopic Aspects of Fatigue Failure713
21.17 Fatigue Crack Growth717
21.18 The Effect of Nonmetallic Inclusions720
21.19 The Effect of Steel Microstructure on Fatigue721
21.20 Low-Cycle Fatigue721
21.21 The Coffin-Manson Equation726
21.22 Certain Practical Aspects of Fatigue727
Problems728
References729
APPENDICES731
A ANGLES BETWEEN CRYSTALLOGRAPHIC PLANES IN THE CUBIC SYSTEM IN DEGREES731
B ANGLES BETWEEN CRYSTALLOGRAPHIC PLANES FOR HEXAGONAL ELEMENTS733
C INDICES OF THE REFLECTING PLANES FOR CUBIC STRUCTURES734
D CONVERSION FACTORS AND CONSTANTS734
E TWINNING ELEMENTS OF SEVERAL OF THE MORE IMPORTANT TWINNING MODES735
F SELECTED VALUES OF INTRINSIC STACKING-FAULT ENERGY ITWIN-BOUNDARY ENERGY T GRAIN-BOUNDARY ENERGY GAND CRYSTAL-VAPOR SURFACE ENERGY FOR VARIOUS MATERIALS IN ERGS/CM2735
LIST OF IMPORTANT SYMBOLS737
LIST OF GREEK LETTER SYMBOLS739
INDEX740
热门推荐
- 394108.html
- 4602.html
- 2336132.html
- 46438.html
- 2840048.html
- 1537635.html
- 2476019.html
- 2577067.html
- 1212895.html
- 3469536.html
- http://www.ickdjs.cc/book_3508104.html
- http://www.ickdjs.cc/book_1281086.html
- http://www.ickdjs.cc/book_2683281.html
- http://www.ickdjs.cc/book_699623.html
- http://www.ickdjs.cc/book_3592.html
- http://www.ickdjs.cc/book_370989.html
- http://www.ickdjs.cc/book_56544.html
- http://www.ickdjs.cc/book_2563246.html
- http://www.ickdjs.cc/book_1289639.html
- http://www.ickdjs.cc/book_2826405.html