图书介绍
应用线性回归模型 第4版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (美)库特纳等著 著
- 出版社: 北京:高等教育出版社
- ISBN:7040163802
- 出版时间:2005
- 标注页数:702页
- 文件大小:122MB
- 文件页数:739页
- 主题词:线性回归-高等学校-教材-英文
PDF下载
下载说明
应用线性回归模型 第4版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART ONE SIMPLE LINEAR REGRESSION1
Chapter 1 Linear Regression with One Predictor Variable2
1.1 Relations between Variables2
Functional Relation between Two Variables2
Statistical Relation between Two Variables3
1.2 Regression Models and Their Uses5
Historical Origins5
Basic Concepts5
Construction of Regression Models7
Uses of Regression Analysis8
Regression and Causality8
Use of Computers9
1.3 Simple Linear Regression Model with Distribution of Error Terms Unspecified9
Formal Statement of Model9
Important Features of Model9
Meaning of Regression Parameters11
Alternative Versions of Regression Model12
1.4 Data for Regression Analysis12
Observational Data12
Experimental Data13
Completely Randomized Design13
1.5 Overview of Steps in Regression Analysis13
1.6 Estimation of Regression Function15
Method of Least Squares15
Point Estimation of Mean Response21
Residuals22
Properties of Fitted Regression Line23
1.7 Estimation of Error Terms Variance σ224
Point Estimator of σ224
1.8 Normal Error Regression Model26
Model26
Estimation of Parameters by Method of Maximum Likelihood27
Cited References33
Problems33
Exercises37
Projects38
Chapter 2 Inferences in Regression and Correlation Analysis40
2.1 Inferences Concerning β140
Sampling Distribution of b141
Sampling Distribution of (b1 - β1)/s {b1}44
Confidence Interval for β145
Tests Concerning β147
2.2 Inferences Concerning β048
Sampling Distribution of b048
Sampling Distribution of (bo-βo) /s{bo}49
Confidence Interval for β049
2.3 Some Considerations on Making Inferences Concerning β0 and β150
Effects of Departures from Normality50
Interpretation of Confidence Coefficient and Risks of Errors50
Spacing of the X Levels50
Power of Tests50
2.4 Interval Estimation of E{Yh}52
Sampling Distribution of Yh52
Sampling Distribution of(?h-E{Yh})/s{Yh}54
Confidence Interval for E{Yh}54
2.5 Prediction of New Observation55
Prediction Interval for Yh(new) when Parameters Known56
Prediction Interval for Yh(new) when Parameters Unknown57
Prediction of Mean of m New Observations for Given Xh60
2.6 Confidence Band for Regression Line61
2.7 Analysis of Variance Approach to Regression Analysis63
Partitioning of Total Sum of Squares63
Breakdown of Degrees of Freedom66
Mean Squares66
Analysis of Variance Table67
Expected Mean Squares68
F Test of β1=0 versus β1≠069
2.8 General Linear Test Approach72
Full Model72
Reduced Model72
Test Statistic73
Summary73
2.9 Descriptive Measures of Linear Association between X and Y74
Coefficient of Determination74
Limitations of R275
Coefficient of Correlation76
2.10 Considerations in Applying Regression Analysis77
2.11 Normal Correlation Models78
Distinction between Regression and Correlation Model78
Bivariate Normal Distribution78
Conditional Inferences80
Inferences on Correlation Coefficients83
Spearman Rank Correlation Coefficient87
Cited References89
Problems89
Exercises97
Projects98
Chapter 3 Diagnostics and Remedial Measures100
3.1 Diagnostics for Predictor Variable100
3.2 Residuals102
Properties of Residuals102
Semistudentized Residuals103
Departures from Model to Be Studied by Residuals103
3.3 Diagnostics for Residuals103
Nonlinearity of Regression Function104
Nonconstancy of Error Variance107
Presence of Outliers108
Nonindependence of Error Terms108
Nonnormality of Error Terms110
Omission of Important Predictor Variables112
Some Final Comments114
3.4 Overview of Tests Involving Residuals114
Tests for Randomness114
Tests for Constancy of Variance115
Tests for Outliers115
Tests for Normality115
3.5 Correlation Test for Normality115
3.6 Tests for Constancy of Error Variance116
Brown-Forsythe Test116
Breusch-Pagan Test118
3.7 F Test for Lack of Fit119
Assumptions119
Notation121
Full Model121
Reduced Model123
Test Statistic123
ANOVA Table124
3.8 Overview of Remedial Measures127
Nonlinearity of Regression Function128
Nonconstancy of Error Variance128
Nonindependence of Error Terms128
Nonnormality of Error Terms128
Omission of Important Predictor Variables129
Outlying Observations129
3.9 Transformations129
Transformations for Nonlinear Relation Only129
Transformations for Nonnormality and Unequal Error Variances132
Box-Cox Transformations134
3.10 Exploration of Shape of Regression Function137
Lowess Method138
Use of Smoothed Curves to Confirm Fitted Regression Function139
3.11 Case Example—Plutonium Measurement141
Cited References146
Problems146
Exercises151
Projects152
Case Studies153
Chapter 4 Simultaneous Inferences and Other Topics in Regression Analysis154
4.1 Joint Estimation ofβ0 andβ1154
Need for Joint Estimation154
Bonferroni Joint Confidence Intervals155
4.2 Simultaneous Estimation of Mean Responses157
Working-Hotelling Procedure158
Bonferroni Procedure159
4.3 Simultaneous Prediction Intervals for New Observations160
4.4 Regression through Origin161
Model161
Inferences161
Important Cautions for Using Regression through Origin164
4.5 Effects of Measurement Errors165
Measurement Errors in Y165
Measurement Errors in X165
Berkson Model167
4.6 Inverse Predictions168
4.7 Choice of X Levels170
Cited References172
Problems172
Exercises175
Projects175
Chapter 5 Matrix Approach to Simple Linear Regression Analysis176
5.1 Matrices176
Definition of Matrix176
Square Matrix178
Vector178
Transpose178
Equality of Matrices179
5.2 Matrix Addition and Subtraction180
5.3 Matrix Multiplication182
Multiplication of a Matrix by a Scalar182
Multiplication of a Matrix by a Matrix182
5.4 Special Types of Matrices185
Symmetric Matrix185
Diagonal Matrix185
Vector and Matrix with All Elements Unity187
Zero Vector187
5.5 Linear Dependence and Rank of Matrix188
Linear Dependence188
Rank of Matrix188
5.6 Inverse of a Matrix189
Finding the Inverse190
Uses of Inverse Matrix192
5.7 Some Basic Results for Matrices193
5.8 Random Vectors and Matrices193
Expectation of Random Vector or Matrix193
Variance-Covariance Matrix of Random Vector194
Some Basic Results196
Multivariate Normal Distribution196
5.9 Simple Linear Regression Model in Matrix Terms197
5.10 Least Squares Estimation of Regression Parameters199
Normal Equations199
Estimated Regression Coefficients200
5.11 Fitted Values and Residuals202
Fitted Values202
Residuals203
5.12 Analysis of Variance Results204
Sums of Squares204
Sums of Squares as Quadratic Forms205
5.13 Inferences in Regression Analysis206
Regression Coefficients207
Mean Response208
Prediction of New Observation209
Cited Reference209
Problems209
Exercises212
PART TWO MULTIPLE LINEAR REGRESSION213
Chapter 6 Multiple Regression Ⅰ214
6.1 Multiple Regression Models214
Need for Several Predictor Variables214
First-Order Model with Two Predictor Variables215
First-Order Model with More than Two Predictor Variables217
General Linear Regression Model217
6.2 General Linear Regression Model in Matrix Terms222
6.3 Estimation of Regression Coefficients223
6.4 Fitted Values and Residuals224
6.5 Analysis of Variance Results225
Sums of Squares and Mean Squares225
F Test for Regression Relation226
Coefficient of Multiple Determination226
Coefficient of Multiple Correlation227
6.6 Inferences about Regression Parameters227
Interval Estimation of βk228
Tests for βk228
Joint Inferences228
6.7 Estimation of Mean Response and Prediction of New Observation229
Interval Estimation of E{Yh}229
Confidence Region for Regression Surface229
Simultaneous Confidence Intervals for Several Mean Responses230
Prediction of New Observation Yh(new)230
Prediction of Mean of m New Observations at Xh230
Predictions of g New Observations231
Caution about Hidden Extrapolations231
6.8 Diagnostics and Remedial Measures232
Scatter Plot Matrix232
Three-Dimensional Scatter Plots233
Residual Plots233
Correlation Test for Normality234
Brown-Forsythe Test for Constancy of Error Variance234
Breusch-Pagan Test for Constancy of Error Variance234
F Test for Lack of Fit235
Remedial Measures236
6.9 An Example—Multiple Regression with Two Predictor Variables236
Setting236
Basic Calculations237
Estimated Regression Function240
Fitted Values and Residuals241
Analysis of Appropriateness of Model241
Analysis of Variance243
Estimation of Regression Parameters245
Estimation of Mean Response245
Prediction Limits for New Observations247
Cited Reference248
Problems248
Exercises253
Projects254
Chapter 7 Multiple Regression Ⅱ256
7.1 Extra Sums of Squares256
Basic Ideas256
Definitions259
Decomposition of SSR into Extra Sums of Squares260
ANOVA Table Containing Decomposition of SSR261
7.2 Uses of Extra Sums of Squares in Tests for Regression Coefficients263
Test whether a Single βk=0263
Test whether Several βk=0264
7.3 Summary of Tests Concerning Regression Coefficients266
Test whether All βk=0266
Test whether a Single βk=0267
Test whether Some βk=0267
Other Tests268
7.4 Coefficients of Partial Determination268
Two Predictor Variables269
General Case269
Coefficients of Partial Correlation270
7.5 Standardized Multiple Regression Model271
Roundoff Errors in Normal Equations Calculations271
Lack of Comparability in Regression Coefficients272
Correlation Transformation272
Standardized Regression Model273
X'X Matrix for Transformed Variables274
Estimated Standardized Regression Coefficients275
7.6 Multicollinearity and Its Effects278
Uncorrelated Predictor Variables279
Nature of Problem when Predictor Variables Are Perfectly Correlated281
Effects of Multicollinearity283
Need for More Powerful Diagnostics for Multicollinearity289
Cited Reference289
Problems289
Exercise292
Projects293
Chapter 8 Regression Models for Quantitative and Qualitative Predictors294
8.1 Polynomial Regression Models294
Uses of Polynomial Models294
One Predictor Variable—Second Order295
One Predictor Variable—Third Order296
One Predictor Variable—Higher Orders296
Two Predictor Variables—Second Order297
Three Predictor Variables—Second Order298
Implementation of Polynomial Regression Models298
Case Example300
Some Further Comments on Polynomial Regression305
8.2 Interaction Regression Models306
Interaction Effects306
Interpretation of Interaction Regression Models with Linear Effects306
Interpretation of Interaction Regression Models with Curvilinear Effects309
Implementation of Interaction Regression Models311
8.3 Qualitative Predictors313
Qualitative Predictor with Two Classes314
Interpretation of Regression Coefficients315
Qualitative Predictor with More than Two Classes318
Time Series Applications319
8.4 Some Considerations in Using Indicator Variables321
Indicator Variables versus Allocated Codes321
Indicator Variables versus Quantitative Variables322
Other Codings for Indicator Variables323
8.5 Modeling Interactions between Quantitative and Qualitative Predictors324
Meaning of Regression Coefficients324
8.6 More Complex Models327
More than One Qualitative Predictor Variable328
Qualitative Predictor Variables Only329
8.7 Comparison of Two or More Regression Functions329
Soap Production Lines Example330
Instrument Calibration Study Example334
Cited Reference335
Problems335
Exercises340
Projects341
Case Study342
Chapter 9 Building the Regression Model Ⅰ:Model Selection and Validation343
9.1 Overview of Model-Building Process343
Data Collection343
Data Preparation346
Preliminary Model Investigation346
Reduction of Explanatory Variables347
Model Refinement and Selection349
Model Validation350
9.2 Surgical Unit Example350
9.3 Criteria for Model Selection353
R2 p or SSEp Criterion354
R2 a,p or MSEp Criterion355
Mallows' Cp Criterion357
A1Cp and SBCp Criteria359
PRESSp Criterion360
9.4 Automatic Search Procedures for Model Selection361
"Best" Subsets Algorithm361
Stepwise Regression Methods364
Forward Stepwise Regression364
Other Stepwise Procedures367
9.5 Some Final Comments on Automatic Model Selection Procedures368
9.6 Model Validation369
Collection of New Data to Check Model370
Comparison with Theory, Empirical Evidence,or Simulation Results371
Data Splitting372
Cited References375
Problems376
Exercise380
Projects381
Case Studies382
Chapter 10 Building the Regression Model Ⅱ:Diagnostics384
10.1 Model Adequacy for a Predictor Variable—Added-Variable Plots384
10.2 Identifying Outlying Y Observations—Studentized Deleted Residuals390
Outlying Cases390
Residuals and Semistudentized Residuals392
Hat Matrix392
Studentized Residuals394
Deleted Residuals395
Studentized Deleted Residuals396
10.3 Identifying Outlying X Observations—Hat Matrix Leverage Values398
Use of Hat Matrix for Identifying Outlying X Observations398
Use of Hat Matrix to Identify Hidden Extrapolation400
10.4 Identifying Influential Cases—DFFITS,Cook's Distance,and DFBETAS Measures400
Influence on Single Fitted Value DFFITS401
Influence on All Fitted Values—Cook's Distance402
Influence on the Regression Coefficients DFBETAS404
Influence on Inferences405
Some Final Comments406
10.5 Multicollinearity Diagnostics—Variance Inflation Factor406
Informal Diagnostics407
Variance Inflation Factor408
10.6 Surgical Unit Example Continued410
Cited References414
Problems414
Exercises419
Projects419
Case Studies420
Chapter 11 Building the Regression Model Ⅲ:Remedial Measures421
11.1 Unequal Error Variances Remedial Measures—Weighted Least Squares421
Error Variances Known422
Error Variances Known up to Proportionality Constant424
Error Variances Unknown424
11.2 Multicollinearity Remedial Measures—Ridge Regression431
Some Remedial Measures431
Ridge Regression432
11.3 Remedial Measures for Influential Cases—Robust Regression437
Robust Regression438
IRLS Robust Regression439
11.4 Nonparametric Regression:Lowess Method and Regression Trees449
Lowess Method449
Regression Trees453
11.5 Remedial Measures for Evaluating Precision in Nonstandard Situations—Bootstrapping458
General Procedure459
Bootstrap Sampling459
Bootstrap Confidence Intervals460
11.6 Case Example—MNDOT Traffic Estimation464
The AADT Database464
Model Development465
Weighted Least Squares Estimation468
Cited References471
Problems472
Exercises476
Projects476
Case Studies480
Chapter 12 Autocorrelation in Time Series Data481
12.1 Problems of Autocorrelation481
12.2 First-Order Autoregressive Error Model484
Simple Linear Regression484
Multiple Regression484
Properties of Error Terms485
12.3 Durbin-Watson Test for Autocorrelation487
12.4 Remedial Measures for Autocorrelation490
Addition of Predictor Variables490
Use of Transformed Variables490
Cochrane-Orcutt Procedure492
Hildreth-Lu Procedure495
First Differences Procedure496
Comparison of Three Methods498
12.5 Forecasting with Autocorrelated Error Terms499
Cited References502
Problems502
Exercises507
Projects508
Case Studies508
PART THREE NONLINEAR REGRESSION509
Chapter 13 Introduction to Nonlinear Regression and Neural Networks510
13.1 Linear and Nonlinear Regression Models510
Linear Regression Models510
Nonlinear Regression Models511
Estimation of Regression Parameters514
13.2 Least Squares Estimation in Nonlinear Regression515
Solution of Normal Equations517
Direct Numerical Search—Gauss-Newton Method518
Other Direct Search Procedures525
13.3 Model Building and Diagnostics526
13.4 Inferences about Nonlinear Regression Parameters527
Estimate of Error Term Variance527
Large-Sample Theory528
When Is Large-Sample Theory Applicable?528
Interval Estimation of a Single γk531
Simultaneous Interval Estimation of Several γk532
Test Concerning a Single γk532
Test Concerning Several γk533
13.5 Learning Curve Example533
13.6 Introduction to Neural Network Modeling537
Neural Network Model537
Network Representation540
Neural Network as Generalization of Linear Regression541
Parameter Estimation:Penalized Least Squares542
Example:Ischemic Heart Disease543
Model Interpretation and Prediction546
Some Final Comments on Neural Network Modeling547
Cited References547
Problems548
Exercises552
Projects552
Case Studies554
Chapter 14 Logistic Regression,Poisson Regression,and Generalized Linear Models555
14.1 Regression Models with Binary Response Variable555
Meaning of Response Function when Outcome Variable Is Binary556
Special Problems when Response Variable Is Binary557
14.2 Sigmoidal Response Functions for Binary Responses559
Probit Mean Response Function559
Logistic Mean Response Function560
Complementary Log-Log Response Function562
14.3 Simple Logistic Regression563
Simple Logistic Regression Model563
Likelihood Function564
Maximum Likelihood Estimation564
Interpretation of b1567
Use of Probit and Complementary Log-Log Response Functions568
Repeat Observations—Binomial Outcomes568
14.4 Multiple Logistic Regression570
Multiple Logistic Regression Model570
Fitting of Model571
Polynomial Logistic Regression575
14.5 Inferences about Regression Parameters577
Test Concerning a Single βk:Wald Test578
Interval Estimation of a Single βk579
Test whether Several βk=0:Likelihood Ratio Test580
14.6 Automatic Model Selection Methods582
Model Selection Criteria582
Best Subsets Procedures583
Stepwise Model Selection583
14.7 Tests for Goodness of Fit586
Pearson Chi-Square Goodness of Fit Test586
Deviance Goodness of Fit Test588
Hosmer-Lemeshow Goodness of Fit Test589
14.8 Logistic Regression Diagnostics591
Logistic Regression Residuals591
Diagnostic Residual Plots594
Detection of Influential Observations598
14.9 Inferences about Mean Response602
Point Estimator602
Interval Estimation602
Simultaneous Confidence Intervals for Several Mean Responses603
14.10 Prediction of a New Observation604
Choice of Prediction Rule604
Validation of Prediction Error Rate607
14.11 Polytomous Logistic Regression for Nominal Response608
Pregnancy Duration Data with Polytomous Response609
J—1 Baseline-Category Logitsfor Nominal Response610
Maximum Likelihood Estimation612
14.12 Polytomous Logistic Regression for Ordinal Response614
14.13 Poisson Regression618
Poisson Distribution618
Poisson Regression Model619
Maximum Likelihood Estimation620
Model Development620
Inferences621
14.14 Generalized Linear Models623
Cited References624
Problems625
Exercises634
Projects635
Case Studies640
Appendix A Some Basic Results in Probability and Statistics641
Appendix B Tables659
Appendix C Data Sets677
Appendix D Selected Bibliography687
Index695
热门推荐
- 2962275.html
- 1974483.html
- 1815341.html
- 2491447.html
- 326815.html
- 1598568.html
- 1912512.html
- 970203.html
- 3405243.html
- 1059125.html
- http://www.ickdjs.cc/book_1971541.html
- http://www.ickdjs.cc/book_315439.html
- http://www.ickdjs.cc/book_1369643.html
- http://www.ickdjs.cc/book_2132196.html
- http://www.ickdjs.cc/book_1153468.html
- http://www.ickdjs.cc/book_3020776.html
- http://www.ickdjs.cc/book_1190957.html
- http://www.ickdjs.cc/book_617791.html
- http://www.ickdjs.cc/book_487432.html
- http://www.ickdjs.cc/book_2337476.html