图书介绍

表示论和复几何 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

表示论和复几何 英文
  • Neil Chriss著 著
  • 出版社: 世界图书出版公司北京公司
  • ISBN:7510040573
  • 出版时间:2012
  • 标注页数:495页
  • 文件大小:90MB
  • 文件页数:509页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

表示论和复几何 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 0.Introduction1

Chapter 1.Symplectic Geometry21

1.1. Symplectic Manifolds21

1.2. Poisson Algebras24

1.3. Poisson Structures arising from Noncommutative Algebras26

1.4. The Moment Map41

1.5. Coisotropic Subvarieties49

1.6. Lagrangan Families57

Chapter 2.Mosaic61

2.1. Hilbert's Nullstellensatz61

2.2. Affine Algebraic Varieties63

2.3. The Deformation Construction73

2.4. C-actions on a projective variety81

2.5. Fixed Point Reduction90

2.6. Borel-Moore Homology93

2.7. Convolution in Borel-Moore Homology110

Chapter 3.Complex Semisimple Groups127

3.1. Semisimple Lie Algebras and Flag Varieties127

3.2. Nilpotent Cone144

3.3. The Steinberg Variety154

3.4. Lagrangian Construction ofthe Weyl Group161

3.5. Geometric Analysis of H(Z)-action168

3.6. Irreducible Representations of Weyl Groups175

3.7. Applications of the Jacobson-Morozov Theorem183

Chapter 4.Springer Theory for U(s ln)193

4.1. Geometric Construction of the Enveloping Algebra U(sln(C))193

4.2. Finite-Dimensional Simplesln(C)-Modules199

4.3. Proofof the Main Theorem206

4.4. Stabilization214

Chapter 5.Equivariant K-Theory231

5.1. Equivariant Resolutions231

5.2. Basic K-Theoretic Constructions243

5.3. Specialization in Equivariant K-Theory254

5.4. The Koszul Complex and the Thom Isomorphism260

5.5 Cellular Fibration Lemma269

5.6. The Kiinneth Formula273

5.7. Projective Bundle Theorem and Beilinson Resolution276

5.8. The Chern Character280

5.9. The Dimension Filtration and“Devissage”286

5.10. The Localization Theorem292

5.11. Functoriality296

Chapter 6.Flag Varieties,K-Theory,and Harmonic Polynomials303

6.1. Equivariant K-Theory of the Flag Variety303

6.2. Equivariant K-Theory of the Steinberg Variety311

6.3. Harmonic Polynomials315

6.4. W-Harmonic Polynomials and Flag Varieties321

6.5. Orbital Varieties329

6.6. The Equivariant Hilbert Polynomial335

6.7. Kostant's Theorem on Polynomial Rings346

Chapter 7.Hecke Algebras and K-Theory361

7.1. AffineWeyl Groups and Hecke Algebras361

7.2. Main Theorems366

7.3. Case q=1:Deformation Argument370

7.4. Hilbert Polynomials and Orbital Varieties383

7.5. The Hecke Algebra for SL2389

7.6. Proof of the Main Theorem395

Chapter 8.Representations of Convolution Algebras411

8.1. Standard Modules411

8.2. Character Formula for Standard modules418

8.3. Constructible Complexes421

8.4. Perverse Sheaves and the Classification Theorem433

8.5. The Contravariant Form438

8.6. Sheaf-Theoretic Analysis of the Convolution Algebra445

8.7. Projective Modules over Convolution Algebra460

8.8. A Non-Vanishing Result468

8.9. Semi-Small Maps479

Bibliography487

热门推荐