图书介绍

纳米相和纳米结构材料应用 2 手册 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

纳米相和纳米结构材料应用 2 手册 英文版
  • 王中林主编 著
  • 出版社: 北京:清华大学出版社
  • ISBN:7302057354
  • 出版时间:2002
  • 标注页数:330页
  • 文件大小:35MB
  • 文件页数:355页
  • 主题词:纳米材料 纳米材料

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

纳米相和纳米结构材料应用 2 手册 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

10 Nanomechanism of the Hexagonal-Cubic Phase Transition in Boron Nitride under High Pressure at High Temperature1

10.1 Introduction1

10.2 Processing Method to Get c-BN2

10.3 Characterization Method3

10.4 Phase Transition of Boron Nitride4

10.4.1 Nanostructure of the Starting Material4

10.4.2 Phases and Nanostructures Appearing during the Hexagonal-Cubic Transition6

10.5 Mechanism of Hexagonal-Cubic Transition16

10.5.1 Model for the Transition Mechanism16

10.5.3 Facilitation of Synthesis of c-BN by Mechanochemical Effect19

10.5.2 Atomic Movement during the Conversion from w-to c-BN19

10.6 Prospect22

10.7 Conclusions22

References24

11 Nanomaterials for Energy Storage:Batteries and Fuel Cells26

11.1 General Overview of Batteries and Fuel Cells26

11.1.1 Introduction26

11.1.2 An Overview of Batteries27

11.1.3 An Overview of Fuel Cells29

11.1.4 Importance of Nanomaterials in Batteries and Fuel Cells33

11.2 Batteries and Nanomaterials34

11.2.1 Classifications of Advanced Batteries34

11.2.2 Major Components of Batteries37

11.2.3 Applications of Nanomaterials in Advanced Batteries39

11.2.4 Most Recent Developments46

11.3 Fuel Cells and Nanomaterials46

11.3.1 Classifications of Fuel Cell Systems46

11.3.2 Major Components and Nanomaterials in Fuel Cells49

11.3.3 Applications of Nanomaterials in Fuel Cells50

11.3.4 Summary60

11.4 Conclusions60

References61

12.1 Introduction69

12 Nanocomposites69

12.2 General Features of Nanocomposites74

12.2.1 Physical Sensitivity:Three Effects of Nanoparticles on Material Properties74

12.2.2 Chemical Reactivity75

12.2.3 Promising Improvements in Nanocomposites76

12.2.4 Origin of Nanophases and Generating Stages77

12.3 Ceramic-Based Nanocomposites79

12.3.1 Strength Improvement of Ceramic-Based Nanocomposites80

12.3.2 Toughening Effect of Nanoceramic Composites84

12.3.3 Improvements of Nanoceramic Composites on Hardness and Wear86

12.3.4 Superplasticity of Ceramic Nanocomposites86

12.3.5 Improvement of Nanoceramic Composites on Creep88

12.4 Metallic-Based Nanocomposites89

12.3.6 Ceramic-Based Nanometallic Composites89

12.5 Polymer-Based Nanocomposites91

12.6 Summaries of Nanocomposites93

References94

13 Growth and Properties of Single-Walled Carbon Nanotubes96

13.1 Introduction96

13.2 Synthetic Strategies for Various Nanotube Architectures97

13.2.1 Chemical Vapor Deposition97

13.2.2 Growth of Self-oriented Multi-Walled Nanotubes99

13.2.3 Enable the Growth of Single-Walled Nanotubes by CVD100

13.2.5 Growth of lsolated Single-Walled Nanotubes on Controlled Surface Sites102

13.2.4 Growth Mechanism of SWNT102

13.2.6 Growth of Suspended SWNTs With Directed Orientations104

13.3 Physics in Atomically Well-Defined Nanowires106

13.3.1 Integrated Circuits of Individual Single-Walled Nanotubes106

13.3.2 Electron Transport Properties of Metallic Nanotubes107

13.3.3 Electron Transport Properties of Semiconducting Nanotubes110

13.3.4 Electron Transport Properties of Semiconducting Nanotubes with Small Band Gaps114

13.4 Integrated Nanotube Devices121

13.4.1 Nanotube Molecular Transistors With High Gains121

13.5 Conclusions123

References125

14.2 Theoretical Prediction128

14.1 Introduction128

14 Nanomaterials from Light-Element Composites128

14.2.1 Empirical Model129

14.2.2 First-Principles Study130

14.3 Synthesis by Chemical Vapor Deposition(CVD)131

14.3.1 Bias-Assisted Hot Filament CVD132

14.3.2 Electron Cyclotron Resonance Microwave Plasma-Assisted CVD(MPCVD)133

14.4 Uniform Size-Controlled Nanocrystalline Diamond Films134

14.4.1 Deposition with CN4/N2 Precursor135

14.4.2 Influence of Additional H2 on Microstructure139

14.4.3 Nitrogen Incorporation141

14.4.4 Surface Stable Growth Model141

14.4.5 Field Electron Emission and Transport Tunneling Mechanism142

14.5 Nanocrystalline Carbon Nitride Films144

14.5.1 αandβStructures145

14.5.2 Tetragonal Structure146

14.5.3 Monoclinic Structure147

14.5.4 Fullerene-like Structure147

14.5.5 Carbon Nitride Diamond Silicon Layers148

14.5.6 Physical and Chemical Properties149

14.6 Nanocrystalline Silicon Carbonitride Films150

14.6.1 Deposition With Nitrogen and Methane151

14.6.2 Deposition with Nitrogen.Methane and Hydrogen:Influence of Hydrogen Flow Ratio154

14.6.3 Lattice-Matched Growth Model155

14.7.1 Morphology and Composition156

14.7 Turbostratic Boron Carbonitride Films156

14.7.2 Turbostratic Structure157

14.7.3 Raman and Photoluminescence159

14.7.4 Field Electron Emission160

14.8 Polymerized Nitrogen-Incorporated Carbon Nanobells161

14.8.1 Polymerized Nanobell Structure161

14.8.2 Chemical Separation and Application163

14.8.3 Wall-Side Field Emission Mechanism164

14.9 Highly Oriented Boron Carbonitride Nanofibers165

14.9.1 Microstructure and Composition165

14.10 Conclusions167

14.9.2 Field Electron Emission167

References169

15 Self-Assembled Ordered Nanostructures174

15.1 Ordered Self-Assembled Nanocrystals174

15.1.1 Processing of Nanocrystals for Self-Assembly177

15.1.2 Technical Aspects of Self-Assembling182

15.1.3 Structure of the Nanocrystal Self-Assembly185

15.1.4 Properties of the Nanocrystal Self-Assembly190

15.2 Ordered Self-Assembly of Mesoporous Materials195

15.2.1 Processing196

15.2.2 The Formation Mechanisms197

15.2.3 Applications199

15.2.4 Mesoporous Materials of Transition Metal Oxides203

15.3 Hierarchically Structured Nanomaterials205

15.4 Summary207

References207

16 Molecularly Organized Nanostructural Materials211

16.1 Introduction211

16.1.1 Nanostructural Materials in Energy Sciences211

16.1.2 Nanophase Materials in Environmental and Health Sciences212

16.1.3 Molecularly Organized Nanostructural Materials213

16.2 Molecularly Directed Nucleation and Growth.and Matrix Mediated Nanocomposites213

16.2.1 Molecularly Directed Nanoscale Materials in Nature213

16.2.2 Directed Nucleation and Growth of Thin Films214

16.2.3 Matrix Mediated Nanocomposites217

16.3 Surfactant Directed Hybrid Nanoscale Materials221

16.3.1 Ordered Nanoporous Materials222

16.3.2 Hybrid Nanoscale Materials227

16.4 Summary and Prospects233

References234

17 Nanostructured Bio-inspired Materials237

17.1 Introduction237

17.2 Case Study Ⅰ:Teeth240

17.2.1 Control over Mineralization at Nanometer Scale241

17.2.2 Hierarchical Structure in Biological Materials244

17.3 Case Study Ⅱ:Mesoscopic Silica Films246

17.3.1 Hierarchical Film Structure248

17.3.2 Towards Control of the Properties253

17.4 Conclusion254

References254

18 Nanophase Metal Oxide Materials for Electrochromic Displays257

18.1 Introduction257

18.2 Basic Concepts in Electrochromism258

18.2.1 Electrochromic Display Device258

18.2.2 Electrochromic Materials260

18.2.3 Perceived Color and Contrast Ratio261

18.2.4 Coloration Efficiency and Response Time262

18.2.5 Write-Erase Efficiency and Cycle Life262

18.3 Nanophase Metal Oxide Electrochromic Materials263

18.3.1 Synthesis of Supported ATO Nanocrystallites264

18.3.2 Characterization of Supported ATO Nanocrystallites266

18.4 Construction of Printed.Flexible Displays Using Interdigitated Electrodes268

18.4.1 Design Strategy268

18.4.2 Materials Selection270

18.4.3 Display Examples272

18.5 Contrast of Printed Electrochromic Displays Using ATO Nanophase Materials274

18.5.1 Effect of Antimony Doping on Contrast Ratio275

18.5.2 Effect of Annealing Temperature on Contrast Ratio281

18.5.3 Other Factors That Affect the Contrast Ratio285

References289

18.6 Summary289

19 Engineered Microstructures for Nonlinear Optics292

19.1 Introduction292

19.2 Preparation of DSLs293

19.2.1 Preparation of DSLs by Modulation of Ferroelectric Domains293

19.2.2 Preparation of DSL by Using Photorefractive Effect296

19.3 Outline of the Nonlinear Optics297

19.4 Wave Vector Conservation298

19.5 Nonlinear Optical Frequency Conversion in 1-D Periodic DSLs301

19.6 Nonlinear Optical Frequency Conversion in 1-D QPDSLs303

19.6.1 The Construction of QPDSL304

19.6.2 Theoretical Treatment of the Nonlinear Optical Processes in QPDSLs305

19.6.3 The Effective Nonlinear Optical Coefficients309

19.6.4 QPM Multiwavelength SHG309

19.6.5 Direct THG310

19.7 Optical Bistability in a 2-D DSL311

19.7.1 Bloch Wave Approach312

19.7.2 Four-Path Switch:Linear Case315

19.7.3 A New Type of Optical Bistability Mechanism:Nonlinear Case with One Incident Wave316

19.7.4 A New Type of Optical Bistability Mechanism:Nonlinear Case With Two Incident Waves319

19.8 Outlook320

References322

Index329

热门推荐