图书介绍
纳米相和纳米结构材料应用 2 手册 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 王中林主编 著
- 出版社: 北京:清华大学出版社
- ISBN:7302057354
- 出版时间:2002
- 标注页数:330页
- 文件大小:35MB
- 文件页数:355页
- 主题词:纳米材料 纳米材料
PDF下载
下载说明
纳米相和纳米结构材料应用 2 手册 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
10 Nanomechanism of the Hexagonal-Cubic Phase Transition in Boron Nitride under High Pressure at High Temperature1
10.1 Introduction1
10.2 Processing Method to Get c-BN2
10.3 Characterization Method3
10.4 Phase Transition of Boron Nitride4
10.4.1 Nanostructure of the Starting Material4
10.4.2 Phases and Nanostructures Appearing during the Hexagonal-Cubic Transition6
10.5 Mechanism of Hexagonal-Cubic Transition16
10.5.1 Model for the Transition Mechanism16
10.5.3 Facilitation of Synthesis of c-BN by Mechanochemical Effect19
10.5.2 Atomic Movement during the Conversion from w-to c-BN19
10.6 Prospect22
10.7 Conclusions22
References24
11 Nanomaterials for Energy Storage:Batteries and Fuel Cells26
11.1 General Overview of Batteries and Fuel Cells26
11.1.1 Introduction26
11.1.2 An Overview of Batteries27
11.1.3 An Overview of Fuel Cells29
11.1.4 Importance of Nanomaterials in Batteries and Fuel Cells33
11.2 Batteries and Nanomaterials34
11.2.1 Classifications of Advanced Batteries34
11.2.2 Major Components of Batteries37
11.2.3 Applications of Nanomaterials in Advanced Batteries39
11.2.4 Most Recent Developments46
11.3 Fuel Cells and Nanomaterials46
11.3.1 Classifications of Fuel Cell Systems46
11.3.2 Major Components and Nanomaterials in Fuel Cells49
11.3.3 Applications of Nanomaterials in Fuel Cells50
11.3.4 Summary60
11.4 Conclusions60
References61
12.1 Introduction69
12 Nanocomposites69
12.2 General Features of Nanocomposites74
12.2.1 Physical Sensitivity:Three Effects of Nanoparticles on Material Properties74
12.2.2 Chemical Reactivity75
12.2.3 Promising Improvements in Nanocomposites76
12.2.4 Origin of Nanophases and Generating Stages77
12.3 Ceramic-Based Nanocomposites79
12.3.1 Strength Improvement of Ceramic-Based Nanocomposites80
12.3.2 Toughening Effect of Nanoceramic Composites84
12.3.3 Improvements of Nanoceramic Composites on Hardness and Wear86
12.3.4 Superplasticity of Ceramic Nanocomposites86
12.3.5 Improvement of Nanoceramic Composites on Creep88
12.4 Metallic-Based Nanocomposites89
12.3.6 Ceramic-Based Nanometallic Composites89
12.5 Polymer-Based Nanocomposites91
12.6 Summaries of Nanocomposites93
References94
13 Growth and Properties of Single-Walled Carbon Nanotubes96
13.1 Introduction96
13.2 Synthetic Strategies for Various Nanotube Architectures97
13.2.1 Chemical Vapor Deposition97
13.2.2 Growth of Self-oriented Multi-Walled Nanotubes99
13.2.3 Enable the Growth of Single-Walled Nanotubes by CVD100
13.2.5 Growth of lsolated Single-Walled Nanotubes on Controlled Surface Sites102
13.2.4 Growth Mechanism of SWNT102
13.2.6 Growth of Suspended SWNTs With Directed Orientations104
13.3 Physics in Atomically Well-Defined Nanowires106
13.3.1 Integrated Circuits of Individual Single-Walled Nanotubes106
13.3.2 Electron Transport Properties of Metallic Nanotubes107
13.3.3 Electron Transport Properties of Semiconducting Nanotubes110
13.3.4 Electron Transport Properties of Semiconducting Nanotubes with Small Band Gaps114
13.4 Integrated Nanotube Devices121
13.4.1 Nanotube Molecular Transistors With High Gains121
13.5 Conclusions123
References125
14.2 Theoretical Prediction128
14.1 Introduction128
14 Nanomaterials from Light-Element Composites128
14.2.1 Empirical Model129
14.2.2 First-Principles Study130
14.3 Synthesis by Chemical Vapor Deposition(CVD)131
14.3.1 Bias-Assisted Hot Filament CVD132
14.3.2 Electron Cyclotron Resonance Microwave Plasma-Assisted CVD(MPCVD)133
14.4 Uniform Size-Controlled Nanocrystalline Diamond Films134
14.4.1 Deposition with CN4/N2 Precursor135
14.4.2 Influence of Additional H2 on Microstructure139
14.4.3 Nitrogen Incorporation141
14.4.4 Surface Stable Growth Model141
14.4.5 Field Electron Emission and Transport Tunneling Mechanism142
14.5 Nanocrystalline Carbon Nitride Films144
14.5.1 αandβStructures145
14.5.2 Tetragonal Structure146
14.5.3 Monoclinic Structure147
14.5.4 Fullerene-like Structure147
14.5.5 Carbon Nitride Diamond Silicon Layers148
14.5.6 Physical and Chemical Properties149
14.6 Nanocrystalline Silicon Carbonitride Films150
14.6.1 Deposition With Nitrogen and Methane151
14.6.2 Deposition with Nitrogen.Methane and Hydrogen:Influence of Hydrogen Flow Ratio154
14.6.3 Lattice-Matched Growth Model155
14.7.1 Morphology and Composition156
14.7 Turbostratic Boron Carbonitride Films156
14.7.2 Turbostratic Structure157
14.7.3 Raman and Photoluminescence159
14.7.4 Field Electron Emission160
14.8 Polymerized Nitrogen-Incorporated Carbon Nanobells161
14.8.1 Polymerized Nanobell Structure161
14.8.2 Chemical Separation and Application163
14.8.3 Wall-Side Field Emission Mechanism164
14.9 Highly Oriented Boron Carbonitride Nanofibers165
14.9.1 Microstructure and Composition165
14.10 Conclusions167
14.9.2 Field Electron Emission167
References169
15 Self-Assembled Ordered Nanostructures174
15.1 Ordered Self-Assembled Nanocrystals174
15.1.1 Processing of Nanocrystals for Self-Assembly177
15.1.2 Technical Aspects of Self-Assembling182
15.1.3 Structure of the Nanocrystal Self-Assembly185
15.1.4 Properties of the Nanocrystal Self-Assembly190
15.2 Ordered Self-Assembly of Mesoporous Materials195
15.2.1 Processing196
15.2.2 The Formation Mechanisms197
15.2.3 Applications199
15.2.4 Mesoporous Materials of Transition Metal Oxides203
15.3 Hierarchically Structured Nanomaterials205
15.4 Summary207
References207
16 Molecularly Organized Nanostructural Materials211
16.1 Introduction211
16.1.1 Nanostructural Materials in Energy Sciences211
16.1.2 Nanophase Materials in Environmental and Health Sciences212
16.1.3 Molecularly Organized Nanostructural Materials213
16.2 Molecularly Directed Nucleation and Growth.and Matrix Mediated Nanocomposites213
16.2.1 Molecularly Directed Nanoscale Materials in Nature213
16.2.2 Directed Nucleation and Growth of Thin Films214
16.2.3 Matrix Mediated Nanocomposites217
16.3 Surfactant Directed Hybrid Nanoscale Materials221
16.3.1 Ordered Nanoporous Materials222
16.3.2 Hybrid Nanoscale Materials227
16.4 Summary and Prospects233
References234
17 Nanostructured Bio-inspired Materials237
17.1 Introduction237
17.2 Case Study Ⅰ:Teeth240
17.2.1 Control over Mineralization at Nanometer Scale241
17.2.2 Hierarchical Structure in Biological Materials244
17.3 Case Study Ⅱ:Mesoscopic Silica Films246
17.3.1 Hierarchical Film Structure248
17.3.2 Towards Control of the Properties253
17.4 Conclusion254
References254
18 Nanophase Metal Oxide Materials for Electrochromic Displays257
18.1 Introduction257
18.2 Basic Concepts in Electrochromism258
18.2.1 Electrochromic Display Device258
18.2.2 Electrochromic Materials260
18.2.3 Perceived Color and Contrast Ratio261
18.2.4 Coloration Efficiency and Response Time262
18.2.5 Write-Erase Efficiency and Cycle Life262
18.3 Nanophase Metal Oxide Electrochromic Materials263
18.3.1 Synthesis of Supported ATO Nanocrystallites264
18.3.2 Characterization of Supported ATO Nanocrystallites266
18.4 Construction of Printed.Flexible Displays Using Interdigitated Electrodes268
18.4.1 Design Strategy268
18.4.2 Materials Selection270
18.4.3 Display Examples272
18.5 Contrast of Printed Electrochromic Displays Using ATO Nanophase Materials274
18.5.1 Effect of Antimony Doping on Contrast Ratio275
18.5.2 Effect of Annealing Temperature on Contrast Ratio281
18.5.3 Other Factors That Affect the Contrast Ratio285
References289
18.6 Summary289
19 Engineered Microstructures for Nonlinear Optics292
19.1 Introduction292
19.2 Preparation of DSLs293
19.2.1 Preparation of DSLs by Modulation of Ferroelectric Domains293
19.2.2 Preparation of DSL by Using Photorefractive Effect296
19.3 Outline of the Nonlinear Optics297
19.4 Wave Vector Conservation298
19.5 Nonlinear Optical Frequency Conversion in 1-D Periodic DSLs301
19.6 Nonlinear Optical Frequency Conversion in 1-D QPDSLs303
19.6.1 The Construction of QPDSL304
19.6.2 Theoretical Treatment of the Nonlinear Optical Processes in QPDSLs305
19.6.3 The Effective Nonlinear Optical Coefficients309
19.6.4 QPM Multiwavelength SHG309
19.6.5 Direct THG310
19.7 Optical Bistability in a 2-D DSL311
19.7.1 Bloch Wave Approach312
19.7.2 Four-Path Switch:Linear Case315
19.7.3 A New Type of Optical Bistability Mechanism:Nonlinear Case with One Incident Wave316
19.7.4 A New Type of Optical Bistability Mechanism:Nonlinear Case With Two Incident Waves319
19.8 Outlook320
References322
Index329
热门推荐
- 513744.html
- 3539540.html
- 2320626.html
- 545806.html
- 3105807.html
- 3193497.html
- 2985427.html
- 1672455.html
- 332936.html
- 3006099.html
- http://www.ickdjs.cc/book_98349.html
- http://www.ickdjs.cc/book_1427068.html
- http://www.ickdjs.cc/book_1748009.html
- http://www.ickdjs.cc/book_2320332.html
- http://www.ickdjs.cc/book_1544000.html
- http://www.ickdjs.cc/book_2913118.html
- http://www.ickdjs.cc/book_2496858.html
- http://www.ickdjs.cc/book_3776739.html
- http://www.ickdjs.cc/book_1592328.html
- http://www.ickdjs.cc/book_78772.html