图书介绍

foundations of materials science and engineering2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

foundations of materials science and engineering
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:0页
  • 文件大小:229MB
  • 文件页数:1045页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

foundations of materials science and engineeringPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 Introduction to Materials Scienceand Engineering2

1.1 Materials and Engineering3

1.2 Materials Science and Engineering6

1.3 Types of Materials8

1.3.1 Metallic materials8

1.3.2 Polymeric Materials10

1.3.3 Ceramic Materials11

1.3.4 Composite Materials13

1.3.5 Electronic Materials15

1.4 Competition Among Materials16

1.5 Recent Advances in Materials Science andTechnology and Future Trends18

1.5.1 Smart Materials18

1.5.2 Nanomaterials19

1.6 Design and Selection20

1.7 Summary21

1.8 Delinitions21

1.9 Problems22

1.10 Materials Selection and DesignProblems23

CHAPTER 2 Atomic Structure and Bonding24

2.1 The Structure of Atoms25

2.2 Atomic Numbers and Atomic Masses26

2.2.1 Atomic Numbers26

2.2.2 Atomic Masses26

2.3 The Electronic Structure of Atoms29

2.3.1 The Hydrogen Atom29

2.3.2 Quantum Numbers of Electrons ofAtoms33

2.3.3 Electronic Structure of MultielectronAtoms35

2.3.4 Electronic Structure and ChemicalReactivity39

2.4 Types of Atomic and MolecularBonds41

2.4.1 Primary Atomic Bonds42

2.4.2 Secondarv Atomic and MolecularBonds42

2.5 Ionic Bonding42

2.5.1 Ionic Bonding in General42

2.5.2 Interionic Forces for an Ion Pair43

2.5.3 Interionic Energies for an Ion Pair46

2.5.4 Ion Arrangements in Ionic Solids47

2.5.5 Bonding Energies of Ionic Solids48

2.6 Covalent Bonding49

2.6.1 Covalent Bonding in the HydrogenMolecule49

2.6.2 Covalent Bonding in Other DiatomicMolecules50

2.6.3 Covalent Bonding by Carbon51

2.6.4 Covalent Bonding in Carbon-ContainingMolecules53

2.6.5 Benzene53

2.7 Metallic Bonding55

2.8 Secondary Bonding59

2.8.1 Fluctuating Dipoles60

2.8.2 Permanent Dipoles61

2.9 Mixed Bonding62

2.9.1 Ionic-Covalent Mixed Bonding62

2.9.2 Metallic-Covalent Mixed Bonding63

2.9.3 Metallic-Ionic Mixed Bonding64

2.10 Summary64

2.11 Definitions65

2.12 Problems66

2.13 Materials Selection and DesignProblems70

CHAPTER 3 Crystal and AmorphousStructure in Materials72

3.1 The Space Lattice and Unit Cells73

3.2 Crystal Systems and BravaisLattices74

3.3 Principal Metallic CrystalStructures75

3.3.1 Bodv-Centered Cubic (BCC) CrystalStructure77

3.3.2 Face-Centered Cubic (FCC) CrystalStructure80

3.3.3 Hexagonal Close-Packed (HCP) CrystalStructure81

3.4 Atom Positions in Cubic Unit Cells83

3.5 Directions in Cubic Unit Cells84

3.6 Miller Indices for Crystallographic Planes inCubic Unit Cells88

3.7 Crystallographic Planes and Directions inHexagonal Crystal Structure93

3.7.1 Indices for Crystal Planes in HCP UnitCells93

3.7.2 Direction Indices in HCP UnitCells94

3.8 Comparison of FCC, HCP, and BCC CrystalStructures96

3.8.1 FCC and HCP Crystal Structures96

3.8.2 BCC Crystal Structuty98

3.9 Volume, Planar, and Linear Density Unit-Cell Calculations98

3.9.1 Volume Density98

3.9.2 PlanarAtomic Density99

3.9.3 Linear Atomic Density101

3.10 Polymorphism or Allotropy102

3.11 Crystal Structure Analysis103

3.11.1 X-Ray Sources104

3.11.2 X-Ray Diffraction105

3.11.3 X-Ray Diffraction Analysis of CrystalStructures107

3.12 Amorphous Materials113

3.13 Summary114

3.14 Definitions115

3.15 Problems116

3.16 Materials Selection and DesignProblems122

CHAPTER 4 Solidification and CrystallineImperfections124

4.1 Solidification of Metals125

4.1.1 The Formation of Stable Nuclei in LiquidMetals127

4.1.2 Growth of Crystals in Liquid Metal andFormation of a Grain Structure132

4.1.3 Grain Structure of IndustrialCastings133

4.2 Solidification of Single Crystals134

4.3 Metallic Solid Solutions138

4.3.1 Substitutional Solid Solutions139

4.3.2 Interstitial Solid Solutions141

4.4 Crystalline Imperfections143

4.4.1 Point Defects143

4.4.2 Line Defects (Dislocations)144

4.4.3 Planar Defects147

4.4.4 Volume Defects150

4.5 Experimental Techniques for Identificationof Microstructure and Defects151

4.5.1 Optical Metallography, ASTM Grain Size,and Grain Diameter Determination151

4.5.2 Scanning Electron Microscopy(SEM)156

4.5.3 Transmission Electron Microscopy(TEM)158

4.5.4 High-Resolution Transmission ElectronMicroscopy (HRTEM)159

4.5.5 Scanning Probe Microscopes and AtomicResolution161

4.6 Summary166

4.7 Definitions166

4.8 Problems168

4.9 Materials Selection and DesignProblems170

CHAPTER 5 Thermally Activated Processes andDiffusiop in Solids172

5.1 Rate Processes in Solids173

5.2 Atomic Diffusion in Solids177

5.2.1 Diffusion in Solids in General177

5.2.2 Diffusion Mechanisms177

5.2.3 Steady-State Diffusion180

5.2.4 Non-Steady-State Diffusion182

5.3 Industrial Applications of DiffusionProcesses184

5.3.1 Case Hardening of Steel by Gas Carburizing184

5.3.2 Impurity Diffusion into Silicon Wafers forIntegrated Circuits188

5.4 Effect of Temperature on Diffusion inSolids191

5.5 Summary195

5.6 Definitions195

5.7 Problems196

5.8 Materials Selection and DesignProblems198

CHAPTER 6 Mechanical Properties ofMetals Ⅰ200

6.1 The Processing of Metals and Alloys201

6.1.1 The Casting of Metals and Alloys201

6.1.2 Hot and Cold Rolling of Metals andAlloys203

6.1.3 Extrusion of Metals and Alloys208

6.1.4 Forging209

6.1.5 Other Metal-Forming Processes211

6.2 Stress and Strain in Metals212

6.2.1 Elastic and Plastic Deformation213

6.2.2 Engineering Stress and EngineeringStrain213

6.2.3 Poisson's Ratio216

6.2.4 Shear Stress and Shear Strain216

6.3 The Tensile Test and the Engineering Stress-Strain Diagram217

6.3.1 Mechanical Property Data Obtained from the Tensile Test and the EngineeringStress-Strain Diagram220

6.3.2 Comparison of Engineering Stress-StrainCurves for Selected Alloys225

6.3.3 True Stress and True Strain225

6.4 Hardness and Hardness Testing227

6.5 Plastic Deformation of Metal SingleCrystals229

6.5.1 Slipbands and Slip Lines on the Surface ofMetal Crystals229

6.5.2 Plastic Deformation in Metal Crystals by the Slip Mechanism232

6.5.3 Slip Systems234

6.5.4 Critical Resolved Shear Stress for MetalSingle Crystals235

6.5.5 Schmid's Law237

6.5.6 Twinning240

6.6 Plastic Deformation of PolycrystallineMetals242

6.6.1 Effect of Grain Boundaries on the Strengthof Metals242

6.6.2 Effect of Plastic Deformation onGrain Shape and DislocationArrangements244

6.6.3 Effect of Cold Plastic Deformation onIncreasing the Strength of Metals246

6.7 Solid-Solution Strengthening of Metals247

6.8 Recovery and Recrystallization ofPlastically Deformed Metals249

6.8.1 Structure of a Heavily Cold-Worked Metal before Reheating250

6.8.2 Recoverv251

6.8.3 Recrvstallization252

6.9 Superplasticity in Metals257

6.10 Nanocrystalline Metals259

6.11 Summary261

6.12 Definitions262

6.13 Problems263

6.14 Materials Selection and DesignProblems268

CHAPTER 7 Mechanical Properties ofMetals Ⅱ270

7.1 Fracture of Metals271

7.1.1 Ductile Fracture272

7.1.2 Brittle Fracture273

7.1.3 Toughness and Impact Testing276

7.1.4 Ductile to Brittle TransitionTemperature276

7.1.5 Fracture Toughness279

7.2 Fatigue of Metals281

7.2.1 Cyclic Stresses285

7.2.2 Basic Structural Changes that Occur in a Ductile Metal in the FatigueProcess286

7.2.3 Some Major Factors that Affect theFatigue Strength of a Metal287

7.3 Fatigue Crack Propagation Rate288

7.3.1 Correlation of Fatigue CrackPropagation with Stress and CrackLength288

7.3.2 Fatigue Crack Growth Rate versus Stress-Intensity Factor Range Plots290

7.3.3 Fatigue Lifee Calculations292

7.4 Creep and Stress Rupture of Metals294

7.4.1 Creep of Metals294

7.4.2 The Creep Test296

7.4.3 Creep-Rupture Test297

7.5 Graphical representation of Creep- andStress-Rupture Time-Temperature DataUsing the Larsen-Miller Parameter298

7.6 A Case Study in Failure of MetallicComponents300

7.7 Recent Advances and Future Directions inImproving the Mechanical Performance ofMetals303

7.7.1 Improving Ductility and StrengthSimultaneously303

7.7.2 Fatigue Behavior in Nanocrystalline Metals305

7.8 Summary305

7.9 Definitions306

7.10 Problems307

7.11 Materials Selection and DesignProblems309

CHAPTER 8 Phase Diagrams310

8.1 Phase Diagrams of Pure Substances311

8.2 Gibbs Phase Rule313

8.3 Cooling Curves314

8.4 Binary Isomorphous Alloy Systems315

8.5 The Lever Rule318

8.6 Nonequilibrium Solidification of Alloys322

8.7 Binary Eutectic Alloy Systems326

8.8 Binary Peritectic Alloy Systems333

8.9 Binary Monotectic Systems338

8.10 Invariant Reactions339

8.11 Phase Diagrams with Intermediate Phasesand Compounds341

8.12 Ternary Phase Diagrams345

8.13 Summary348

8.14 Dernnitions349

8.15 Problems351

8.16 Materials Selection and DesignProblems355

CHAPTER 9 Engineering Alloys358

9.1 Production of Iron and Steel360

9.1.1 Production of Pig Iron in a BlastFurnace360

9.1.2 Steelmaking and Processing of Major SteelProduct Forms361

9.2 The Iron-Iron-Carbide System363

9.2.1 The Iron-Iron-Carbide PhaseDiagram363

9.2.2 Solid Phases in the Fe-Fe3C PhaseDiagram363

9.2.3 Invariant Reactions in the Fe-Fe3C PhaseDiagram364

9.2.4 Slow Cooling of Plain-Carbon Steels366

9.3 Heat Treatment of Plain-CarbonSteels373

9.3.1 Martensite373

9.3.2 Isothermal Decomposition ofAustenite378

9.3.3 Continuous-Cooling TransformationDiagram for a Eutectoid Plain-CarbonSteel383

9.3.4 Annealing and Normalizing of Plain-Carbon Steels386

9.3.5 Tempering of Plain-Carbon Steels387

9.3.6 Classification of Plain-Carbon Steels andTypical Mechanical Properties391

9.4 Low-Alloy Steels392

9.4.1 Classification of Alloy Steels392

9.4.2 Distribution of Alloying Elements in AlloySteels394

9.4.3 Effects of Alloying Elements on theEutectoid Temperature of Steels395

9.4.4 Hardenability396

9.4.5 Typical Mechanical Properties andApplications for Low-Alloy Steels401

9.5 Aluminum Alloys401

9.5.1 Precipitation Strengthening(Hardening)403

9.5.2 General Properties of Aluminum and ItsProduction410

9.5.3 Wrought Aluminum Alloys411

9.5.4 Aluminum Casting Alloys416

9.6 Copper Alloys418

9.6.1 General Properties of Copper418

9.6.2 Production of Copper419

9.6.3 Classification of Copper Alloys419

9.6.4 Wrought Copper Alloys422

9.7 Stainless Steels424

9.7.1 Ferritic Stainless Steels424

9.7.2 Martensitic Stainless Steels425

9.7.3 Austenitic Stainless Steels427

9.8 Cast Irons429

9.8.1 General Properties429

9.8.2 Types of Cast Irons429

9.8.3 White Cast Iron429

9.8.4 Gray Cast Iron431

9.8.5 Ductile Cast Irons432

9.8.6 Malleable Cast Irons435

9.9 Magnesium, Titanium, and NickelAlloys436

9.9.1 Magnesium Alloys436

9.9.2 Titanium Alloys438

9.9.3 Nickel Alloys440

9.10 Special-Purpose Alloys andApplications441

9.10.1 Intermetallics441

9.10.2 Shape-Memory Alloys442

9.10.3 Amorphous Metals446

9.11 Metals in Biomedical Applications—Biometals448

9.11.1 Stainless Steels449

9.11.2 Cobalt-Based Alloys449

9.11.3 Titanium Alloys451

9.12 Some Issues in the Orthopedic Application of Metals452

9.13 Summary454

9.14 Definitions455

9.15 Problems457

9.16 Materials Selection and DesignProblems465

CHAPTER 10 Polymeric Materials468

10.1 Introduction469

10.2 Polymerization Reactions471

10.2.1 Covalent Bonding Structure of anEthylene Molecule471

10.2.2 Covalent Bonding Structure of an Activated Ethylene Molecule472

10.2.3 General Reaction for the Polymerization of Polyethylene and the Degree ofPolvmerization473

10.2.4 Chain Polymerization Steps473

10.2.5 Average Molecular Weight forThermoplastics475

10.2.6 Functionality of a Monomer476

10.2.7 Structure of Noncrystalline LinearPolymers476

10.2.8 Vinyl and Vinylidene Polymers478

10.2.9 Homopolymers and Copolymers479

10.2.10 Other Methods of Polymerization482

10.3 Industrial Polymerization Methods484

10.4 Crystallinity and Stereoisomerism in SomeThermoplastics486

10.4.1 Solidification of NoncrystallineThermoplastics486

10.4.2 Solidification of Partly CrystallineThermoplastics486

10.4.3 Structure of Partly CrystallineThermoplastic Materials488

10.4.4 Stereoisomerism in Thermoplastics489

10.4.5 Ziegler and Natta Catalysts490

10.5 Processing of Plastic Materials491

10.5.1 Processes Used for ThermoplasticMaterials492

10.5.2 Processes Used for ThermosettingMaterials496

10.6 General-Purpose Thermoplastics498

10.6.1 Polyethylene500

10.6.2 Polyvinyl Chloride and Copolymers503

10.6.3 Polypropylene505

10.6.4 Polvstvrene505

10.6.5 Polvacrvlonitrile506

10.6.6 Styrene-Acrylonitrile (SAN)507

10.6.7 ABS507

10.6.8 Polymethyl Methacrylate (PMMA)509

10.6.9 Fluoroplastics510

10.7 Engineering Thermoplastics511

10.7.1 Polyamides (Nylons)512

10.7.2 Polycarbonate515

10.7.3 Phenylene Oxide-Based Resins516

10.7.4 Acetals517

10.7.5 Thermoplastic Polyesters518

10.7.6 Polyphenylene Sulfide519

10.7.7 Polvetherimide520

10.7.8 PolvmerAllovs521

10.8 Thermosetting Plastics (Thermosets)521

10.8.1 Phenolics523

10.8.2 Epoxy Resins525

10.8.3 Unsaturated Polyesters527

10.8.4 Amino Resins (Ureas andMelamines)529

10.9 Elastomers (Rubbers)531

10.9.1 Natural Rubber531

10.9.2 Synthetic Rubbers534

10.9.3 Properties of PolychloropreneElastomers536

10.9.4 Vulcanization of PolychloropreneElastomers536

10.10 Deformation and Strengthening of PlasticMaterials539

10.10.1 Deformation Mechanisms forThermoplastics539

10.10.2 Strengthening of Thermoplastics541

10.10.3 Strengthening of ThermosettingPlastics545

10.10.4 Effect of Temperature on the Strength ofPlastic Materials545

10.11 Creep and Fracture of PolymericMaterials546

10.11.1 Creep of Polymeric Materials546

10.11.2 Stress Relaxation of PolymericMaterials547

10.11.3 Fracture of PolymericMaterials550

10.12 Polymers in Biomedical Applications—Biopolymers552

10.12.1 Cardiovascular Applications ofPolymers553

10.12.2 Ophthalmic Applications554

10.12.3 Drug-Delivery Systems555

10.12.4 Suture Materials556

10.12.5 Orthopedic Applications556

10.13 Summary557

10.14 Definitions558

10.15 Problems560

10.16 Materials Selection and DesignProblems570

CHAPTER 11 Ceramics572

11.1 Introduction573

11.2 Simple Ceramic CrystalStructures575

11.2.1 Ionic and Covalent Bonding in SimpleCeramic Compounds575

11.2.2 Simple Ionic Arrangements Found inlonically Bonded Solids576

11.2.3 Cesium Chloride (CsCl) CrystalStructure579

11.2.4 Sodium Chloride (NaCl) CrystalStructure580

11.2.5 Interstitial Sites in FCC and HCP CrystalLattices584

11.2.6 Zinc Blende (ZnS) CrystalStructure586

11.2.7 Calcium Fluoride (CaF2) CrystalStructure588

11.2.8 Antifluorite Crystal Structure590

11.2.9 Corundum (Al2O3) CrystalStructure590

11.2.10 Spinel (MgAl204) Crystal Structure590

11.2.11 Perovskite (CaTiO3) Crystal Structure590

11.2.12 Carbon and Its Allotropes591

11.3 Silicate Structures595

11.3.1 Basic Structural Unit of the SilicateStructures595

11.3.2 Island, Chain, and Ring Structures ofSilicates595

11.3.3 Sheet Structures of Silicates595

11.3.4 Silicate Networks597

11.4 Processing of Ceramics598

11.4.1 Materials Preparation599

11.4.2 Forming599

11.4.3 Thermal Treatments604

11.5 Traditional and EngineeringCeramics606

11.5.1 Traditional Ceramics606

11.5.2 Engineering Ceramics609

11.6 Mechanical Properties of Ceramics611

11.6.1 General611

11.6.2 Mechanisms for the Deformation of Ceramic Materials611

11.6.3 Factors Affecting the Strength of CeramicMaterials612

11.6.4 Toughness of Ceramic Materials613

11.6.5 Transformation Toughening of PartiallyStabilized Zirconia (PSZ)615

11.6.6 Fatigue Failure of Ceramics615

11.6.7 Ceramic Abrasive Materials617

11.7 Thermal Properties of Ceramics618

11.7.1 Ceramic Refractory Materials619

11.7.2 Acidic Refractories620

11.7.3 Basic Refractories620

11.7.4 Ceramic Tile Insulation for the SpaceShuttle Orbiter620

11.8 Glasses620

11.8.1 Definition of a Glass622

11.8.2 Glass Transition Temperature622

11.8.3 Structure of Glasses623

11.8.4 Composition of Glasses624

11.8.5 Viscous Deformation of Glasses626

11.8.6 Forming Methods for Glasses628

11.8.7 Tempered Glass630

11.8.8 Chemically Strengthened Glass630

11.9 Ceramic Coatings and SurfaceEngineering632

11.9.1 Silicate Glasses632

11.9.2 Oxides and Carbides632

11.10 Ceramics in Biomedical Applications634

11.10.1 Alumina in OrthopedicImplants634

11.10.2 Alumina in Dental Implants636

11.10.3 Ceramic Implants and TissueConnectivity636

11.11 Nanotechnology and Ceramics637

11.12 Summary639

11.13 Definitions640

11.14 Problems642

11.15 Materials Selection and DesignProblems646

CHAPTER 12 Composite Materials648

12.1 Introduction649

12.2 Fibers for Reinforced-Plastic CompositeMaterials651

12.2.1 Glass Fibers for Reinforcing PlasticResins651

12.2.2 Carbon Fibers for ReinforcedPlastics653

12.2.3 Aramid Fibers for Reinforcing PlasticResins654

12.2.4 Comparison of Mechanical Propertiesof Carbon, Aramid, and Glass Fibersfor Reinforced-Plastic CompositeMaterials655

12.3 Fiber-Reinforced-Plastic CompositeMaterials657

12.3.1 Matrix Materials for Fiber-ReinforcedPlastic Composite Materials657

12.3.2 Fiber-Reinforced-Plastic CompositeMaterials658

12.3.3 Equations for Elastic Modulus of aLamellar Continuous-Fiber-PlasticMatrix Composite for Isostrain andIsostress Conditions662

12.4 Open-Mold Processes for Fiber-Reinforced-Plastic Composite Materials667

12.4.1 Hand Lay-Up Process667

12.4.2 Spray-Up Process667

12.4.3 Vacuum Bag-Autoclave Process668

12.4.4 Filament-Winding Process670

12.5 Closed-Mold Processes for Fiber-ReinforcedPlastic Composite Materials672

12.5.1 Compression and Injection Molding672

12.5.2 The Sheet-Molding Compound (SMC)Process672

12.5.3 Continuous-Prorusion Process674

12.6 Concrete674

12.6.1 Portland Cement675

12.6.2 Mixing Water for Concrete678

12.6.3 Aggregates for Concrete679

12.6.4 Air Entrainment679

12.6.5 Compressive Strength of Concrete679

12.6.6 Proportioning of Concrete Mixtures679

12.6.7 Reinfoorced and Prestressed Concrete682

12.6.8 Prestressed Concrete683

12.7 Sandwich Structures684

12.7.1 Honeycomb Sandwich Structure684

12.7.2 Cladded Metal Structures685

12.8 Metal-Matrix and Ceramic-MatrixComposites685

12.8.1 Metal-Matrix Composites (MMCs)685

12.8.2 Ceramic-Matrix Composites(CMCs)689

12.8.3 Ceramic Composites andNanotechnology692

12.9 Bone: A Natural Composite Material692

12.9.1 Composition692

12.9.2 Macrostructure692

12.9.3 Mechanical Properties694

12.9.4 Biomechanics of Bone Fracture695

12.9.5 Viscoelasticity of the Bone696

12.9.6 Bone Remodeling696

12.9.7 Nanotechnology and Bone Repair697

12.10 Summary697

12.11 Definitions698

12.12 Problems700

12.13 Materials Selection and DesignProblems704

CHAPTER 13 Corrosion706

13.1 General707

13.2 Electrochemical Corrosion of Metals708

13.2.1 Oxidation-Reduction Reactions708

13.2.2 Standard Electde Half-Cell Potentialsfor Metals710

13.3 Galvanic Cells712

13.3.1 Macroscopic Galvanic Cells withElectrolytes That Are One Molar712

13.3.2 Galvanic Cells with Electrolytes That AreNot One Molar714

13.3.3 Galvanic Cells with Acid or Alkalinefor Metals Electrolytes with No Metal IonsPresent715

13.3.4 Microscopic Galvanic Cell Corrosion ofSingle Electrodes717

13.3.5 Concentration Galvanic Cells718

13.3.6 Galvanic Cells Created by Differences inComposition, Structure, and Stress721

13.4 Corrosion Rates (Kinetics)723

13.4.1 Rate of Uniform Corrosion orElectroplating of a Metal in an AqueousSolution724

13.4.2 Corrosion Reactions and Polarization727

13.4.3 Passivation730

13.4.4 The Galvanic Series731

13.5 Types of Corrosion733

13.5.1 Uniform or General Attack Corrosion733

13.5.2 Galvanic or Two-Metal Corrosion733

13.5.3 Pitting Corrosion734

13.5.4 Crevice Corrosion737

13.5.5 lntergranular Corrosion739

13.5.6 Stress Corrosion741

13.5.7 Erosion Corrosion744

13.5.8 Cavitation Damage744

13.5.9 Fretting Corrosion745

13.5.10 Selective Leaching745

13.5.11 Hydrogen Damage746

13.6 Oxidation of Metals747

13.6.1 Protective Oxide Films747

13.6.2 Mechanisms of Oxidation749

13.6.3 Oxidation Rates (Kinetics)750

13.7 Corrosion Control752

13.7.1 Materials Selection752

13.7.2 Coatings753

13.7.3 Design754

13.7.4 Alteration of Environment755

13.7.5 Cathodic and Anodic Protection756

13.8 Summary758

13.9 Definitions758

13.10 Problems759

13.11 Materials Selection and DesignProblems764

CHAPTER 14 Electrical Properties of Materials766

14.1 Electrical Conduction in Metals767

14.1.1 The Classical Model for ElectricalConduction in Metals767

14.1.2 Ohm's Law769

14.1.3 Drift Velocity of Electrons in al Conducting Metal773

14.1.4 Electrical Resistivity of Metals774

14.2 Energy-Band Model for ElectricalConduction778

14.2.1 Energy-Band Model for Metals778

14.2.2 Energy-Band Model for Insulators780

14.3 Intrinsic Semiconductors780

14.3.1 The Mechanism of Electrical Conduction in Intrinsic Semiconductors780

14.3.2 Electrical Charge Transport in theCrystal Lattice of Pure Silicon781

14.3.3 Energy-Band Diagram for IntrinsicElemental Semiconductors782

14.3.4 Quantitative Relationships for ElectricalConduction in Elemental IntrinsicSemiconductors783

14.3.5 Effect of Temperature on IntrinsicSemiconductivity785

14.4 Extrinsic Semiconductors787

14.4.1 n-Type (Negative-Type) ExtrinsicSemiconductors787

14.4.2 p-Type (Positive-Type) ExtrinsicSemiconductors789

14.4.3 Doping of Extrinsic SiliconSemiconductor Material791

14.4.4 Effect of Doping on CarrierConcentrations in ExtrinsicSemiconductors791

14.4.5 Effect of Total Ionized ImpurityConcentration on the Mobility ofCharge Carriers in Silicon at RoomTemperature794

14.4.6 Effect of Temperature on the ElectricalConductivity of ExtrinsicSemiconductors795

14.5 Semiconductor Devices797

14.5.1 The pn Junction798

14.5.2 Some Application for pn JunctionDiodes801

14.5.3 The Bipolar Junction Transistor803

14.6 Microelectronics804

14.6.1 Microelectronic Planar BipolarTransistors806

14.6.2 Microelectronic Planar Field-EffectTransistors807

14.6.3 Fabrication of MicroelectronicIntegrated Circuits809

14.7 Compound Semiconductors816

14.8 Electrical Properties of Ceramics819

14.8.1 Basic Properties of Dielectrics819

14.8.2 Ceramic Insulator Materials822

14.8.3 Ceramic Materials far Capacitors823

14.8.4 Ceramic Semiconductors824

14.8.5 Ferroelectric Ceramics826

14.9 Nanoelectronics829

14.10 Summary830

14.11 Definitions831

14.12 Problems834

14.13 Materials Selection and DesignProblems838

CHAPTER 15 Optical Properties andSuperconductive Materials840

15.1 Introduction841

15.2 Light and the ElectromagneticSpectrum841

15.3 Refraction of Light844

15.3.1 Index of refraction844

15.3.2 Snell's Law of Light Refraction845

15.4 Absorption, Transmission, and Reflection ofLight847

15.4.1 Metals847

15.4.2 Silicate Glasses847

15.4.3 Plastics850

15.4.4 Semiconductors850

15.5 Luminescence851

15.5.1 Photoluminescence852

15.5.2 Cathodoluminescence852

15.6 Stimulated Emission of Radiation andLasers854

15.6.1 Types of Lasers856

15.7 Optical Fibers858

15.7.1 Light Loss in Optical Fibers858

15.7.2 Single-Mode and Multimode OpticalFibers859

15.7.3 Fabrication of Optical Fibers860

15.7.4 Modern Optical-Fiber CommunicationSystems862

15.8 Superconducting Materials863

15.8.1 The Superconducting State863

15.8.2 Magnetic Properties ofSuperconductors864

15.8.3 Current Flow and Magnetic Fields inSuperconductors866

15.8.4 High-Current, High-FieldSuperconductors867

15.8.5 High Critical Temperature (Tc)Superconducting Oxides869

15.9 Definitions871

15.10 Problems872

15.11 Materials Selection and DesignProblems874

CHAPTER 16 Magnetic Properties888

16.1 Introduction889

16.2 Magnetic Fields and Quantities889

16.2.1 Magnetic Fields889

16.2.2 Magnetic Induction892

16.2.3 Magnetic Permeability892

16.2.4 Magnetic Susceptibility894

16.3 Types of Magnetism882

16.3.1 Diamagnetism883

16.3.2 Paramagnetism883

16.3.3 Ferromagnetism883

16.3.4 Magnetic Moment of a Single UnpairedAtomic Electron885

16.3.5 Antiferromagnetism887

16.3.6 Ferrimagnetism887

16.4 Effect of Temperature onFerromagnetism887

16.5 Ferromagnetic Domains888

16.6 Types of Energies That Determine theStructure of FerromagneticDomains890

16.6.1 Exchange Energy890

16.6.2 Magnetostatic Energy891

16.6.3 Magnetocrystalline AnisotropyEnergy891

16.6.4 Domain Wall Energy892

16.6.5 Magnetostrictive Energy893

16.7 The Magnetization and Demagnetization ofa Ferromagnetic Metal895

16.8 Soft Magnetic Materials896

16.8.1 Desirable Properties for Soft MagneticMaterials897

16.8.2 Energy Losses for Soft MagneticMaterials897

16.8.3 Iron-Silicon Alloys898

16.8.4 Metallic Glasses899

16.8.5 Nickel-Iron Alloys900

16.9 Hard Magnetic Materials903

16.9.1 Properties of Hard MagneticMaterials903

16.9.2 Alnico Alloys905

16.9.3 Rare earth Alloys907

16.9.4 Neodymium-Iron-Boron MagneticAlloys909

16.9.5 Iron-Chromium-Cobalt MagneticAlloys909

16.10 Ferrites911

16.10.1 Magnetically Soft Ferrites923

16.10.2 Magnetically Hard Ferrites928

16.11 Summary916

16.12 Definitions917

16.13 Problems920

16.14 Materials Selection and DesignProblems924

APPENDIX Ⅰ Important Properties ofSelected Engineering Materials925

APPENDIX Ⅱ Some Properties ofSelected Elements980

APPENDIX Ⅲ Ionic Radii of the Elements982

APPENDIX Ⅳ Selected Physical Quantitiesand Their Units985

References for Further Study byChapter987

Glossary990

Answers1001

ndex1004

热门推荐