图书介绍

计算物理学2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

计算物理学
  • 顾昌鑫主编;顾昌鑫,朱允伦,丁培柱,张开明编著 著
  • 出版社: 上海市:复旦大学出版社
  • ISBN:9787309074840
  • 出版时间:未知
  • 标注页数:435页
  • 文件大小:12MB
  • 文件页数:452页
  • 主题词:物理学-数值计算-计算方法

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

计算物理学PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 绪论和预备知识1

绪论1

1.1 计算机计算的特点9

1.2 函数离散化和曲线拟合12

一、多项式插值12

二、曲线拟合(实验数据拟合)21

1.3 数值积分24

一、Newton-Cotes型积分公式24

二、高斯(Gauss)型积分公式29

附录Ⅰ 线性方程组的追赶法求解32

附录Ⅱ 三次δ样条插值33

第二章 物理问题的数值计算与分析(Ⅰ)——常微分方程的数值解36

2.1 引言——数值解的必要性36

2.2 常微分方程初值问题的数值解法39

一、Euler折线法39

二、Runge-Kutta(龙格—库塔)法44

三、Adams(阿达姆斯)方法45

四、高阶微分方程和一阶微分方程组的求解47

2.3 二阶常微分方程的数值解·原子结构的计算48

一、Numerov方法49

二、原子结构的计算——径向薛定谔方程数值解51

2.4 常微分方程边值问题的差分法求解63

一、差分和差商63

二、微分方程差分化64

三、常微分方程的本征值问题66

附录Ⅰ 分子轨道计算70

Ⅰ.1引言70

Ⅰ.2Roothaan方程和从头计算72

Ⅰ.3几种常用的近似方法79

Ⅰ.4多重散射Xα方法84

Ⅰ.5关于固体电子结构计算89

第三章 物理问题的数值计算与分析(Ⅱ)——偏微分方程的数值解92

3.1 引言92

一、偏微分方程的求解概述92

二、电磁场计算中的微分方程94

3.2 有限差分法99

一、差分格式的稳定性100

二、弦振动(双曲型)方程的差分格式与稳定性103

三、热传导(抛物型)方程的差分格式与稳定性108

四、椭圆型方程的差分格式109

五、其他物理问题差分格式举例123

3.3 变分法126

一、Ritz方法127

二、迦辽金(Гаёркцн)方法130

3.4 有限元素法132

一、常微分方程边值问题的有限元方法133

二、椭圆型偏微分方程边值问题的有限元方法134

三、有限元方程的求解148

四、磁场中存在铁磁物质时的有限元法计算148

五、时变电磁场的有限元素法152

六、有限差分法与有限元素法的比较154

附录Ⅰ 矩阵的一维表示及高斯消去法有限元素法中矩阵作一维表示的总本合成155

一、矩阵的一维表示及一维表示下的消去法155

二、矩阵作一维表示的总体合成158

第四章 物理问题常用算法之一——快速傅里叶变换161

4.1 引言161

4.2 傅里叶正变换和逆变换163

4.3 卷积和相关168

4.4 离散傅里叶变换170

4.5 快速傅里叶变换179

4.6 快速傅里叶变换应用举例之一——广延X射线吸收精细结构的数据处理183

一、EXAFS实验现象与基本理论184

二、EXAFS的数据处理188

4.7 快速傅里叶变换应用举例之二——X光电子能谱的实验数据处理205

一、引言205

二、噪声和背景的扣除206

三、谱的退卷积处理210

第五章 物理问题常用算法之二——最优化方法215

5.1 引言215

5.2 无约束最优化问题求解218

一、最优化问题基础和基本解法218

二、一维搜索(Linear Search)222

三、求解无约束最优化问题的解析法——非直接搜索法233

四、求解无约束最优化问题的直接搜索法245

5.3 有约束最优化问题求解249

一、惩罚函数法249

二、复合形法(Complex Method)250

5.4 遗传算法——全局优化算法254

一、遗传算法的基本原理255

二、遗传算法操作步骤256

5.5 遗传算法应用举例——离轴电子全息图的全局最优化数值重现260

一、电子全息概述260

二、电子全息图的记录262

三、电子全息图的数值重现265

5.6 实验数据优化方法处理应用举例——俄歇电子能谱的实验数据处理270

一、引言270

二、俄歇电子谱的退自卷积272

第六章 物理研究中确定论模拟方法——分子动力学方法(MD)276

6.1 引言276

6.2 分子动力学模拟的基本步骤280

6.3 平衡态分子动力学模拟287

一、微正则系综的分子动力学模拟288

二、正则系综的分子动力学模拟290

6.4 从头计算的分子动力学模拟概要293

6.5 分子动力学模拟应用举例——MoS2基板上外延生长C60薄膜的MD模拟297

附录Ⅰ 时间步长h选取对模拟计算的影响304

附录Ⅱ 能量均分和费米—帕斯塔—乌拉姆(Fermi—Pasta—Ulam,FPU)问题306

第七章 物理问题的随机模拟方法——蒙特卡罗方法(MC)309

7.1 概论309

一、引言309

二、蒙特卡罗方法数学基础313

三、蒙特卡罗方法的基本思想和基本步骤317

四、拉普拉斯方程的蒙特卡罗方法求解——醉汉问题320

五、蒙特卡罗方法的特点323

7.2 随机数和随机抽样323

一、产生均匀分布的随机数的方法325

二、产生具有给定分布的随机变量——随机抽样329

7.3 蒙特卡罗方法在确定性问题中的应用339

一、应用蒙特卡罗方法计算积分340

二、求解非线性方程组的随机搜索法347

7.4 蒙特卡罗方法在随机性问题中的应用349

一、随机游动问题349

二、随机生长过程模拟352

三、中子输运过程模拟354

四、电子与固体相互作用的蒙特卡罗模拟358

7.5 量子蒙特卡罗方法369

一、变分蒙特卡罗方法(VMC)369

二、格林函数蒙特卡罗方法(GFMC)371

三、路径积分蒙特卡罗方法(PIMC)374

四、量子蒙特卡罗方法的应用375

7.6 MC在统计物理与格点规范理论中的应用376

一、计算平衡态平均值的基本方法376

二、蒙特卡罗方法在格点规范理论中的应用380

第八章 辛算法基础与应用举例——薛定谔方程的辛算法384

前言384

8.1 辛结构与Hamilton系统的辛算法386

一、辛结构与Hamilton力学386

二、Hamilton系统的辛格式393

8.2 定态Schrodinger方程的辛形式与辛算法400

一、一维定态Schrodinger方程的辛形式401

二、一维定态Schrodinger方程的辛-打靶法402

三、一维连续态的保Wronskian算法406

8.3 含时Schrodinger方程的辛算法与应用409

一、量子系统是一个无穷维Hamilton系统410

二、基于完备基展开的辛算法411

三、含时Schrodinger方程的辛离散——空间变量离散法419

四、强激光场中的一维模型原子——基于渐近边界条件的辛算法425

热门推荐