图书介绍
Information Theory and Network Coding2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- Raymond W. Yeung 著
- 出版社: Springer US
- ISBN:387792333
- 出版时间:2008
- 标注页数:582页
- 文件大小:58MB
- 文件页数:605页
- 主题词:
PDF下载
下载说明
Information Theory and Network CodingPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 The Science of Information1
Part Ⅰ Components of Information Theory7
2 Information Measures7
2.1 Independence and Markov Chains7
2.2 Shannon’s Information Measures12
2.3 Continuity of Shannon’s Information Measures for Fixed Finite Alphabets18
2.4 Chain Rules21
2.5 Informational Divergence23
2.6 The Basic Inequalities26
2.7 Some Useful Information Inequalities28
2.8 Fano’sInequality32
2.9 Maximum Entropy Distributions36
2.10 Entropy Rate of a Stationary Source38
Appendix 2.A:Approximation of Random Variables with Countably Infinite Alphabets by Truncation41
Chapter Summary43
Problems45
Historical Notes50
3 The I-Measure51
3.1 Preliminaries52
3.2 The I-Measure for Two Random Variables53
3.3 Construction of the I-Measure μ55
3.4 μ* Can Be Negative59
3.5 Information Diagrams61
3.6 Examples of Applications67
Appendix 3.A:A Variation of the Inclusion-Exclusion Formula74
Chapter Summary76
Problems78
Historical Notes80
4 Zero-Error Data Compression81
4.1 The Entropy Bound81
4.2 Prefix Codes86
4.2.1 Definition and Existence86
4.2.2 Huffman Codes88
4.3 Redundancy of Prefix Codes93
Chapter Summary97
Problems98
Historical Notes99
5 Weak Typicality101
5.1 The Weak AEP101
5.2 The Source Coding Theorem104
5.3 Efficient Source Coding106
5.4 The Shannon-McMillan-Breiman Theorem107
Chapter Summary109
Problems110
Historical Notes112
6 Strong Typicality113
6.1 Strong AEP113
6.2 Strong Typicality Versus Weak Typicality121
6.3 Joint Typicality122
6.4 An Interpretation of the Basic Inequalities131
Chapter Summary131
Problems132
Historical Notes135
7 Discrete Memoryless Channels137
7.1 Definition and Capacity141
7.2 The Channel Coding Theorem149
7.3 The Converse152
7.4 Achievability157
7.5 A Discussion164
7.6 Feedback Capacity167
7.7 Separation of Source and Channel Coding172
Chapter Summary175
Problems176
Historical Notes181
8 Rate-Distortion Theory183
8.1 Single-Letter Distortion Measures184
8.2 The Rate-Distortion Function R(D)187
8.3 The Rate-Distortion Theorem192
8.4 The Converse200
8.5 Achievability of RI (D)202
Chapter Summary207
Problems208
Historical Notes209
9 The Blahut-Arimoto Algorithms211
9.1 Alternating Optimization212
9.2 The Algorithms214
9.2.1 Channel Capacity214
9.2.2 The Rate-Distortion Function219
9.3 Convergence222
9.3.1 A Sufficient Condition222
9.3.2 Convergence to the Channel Capacity225
Chapter Summary226
Problems227
Historical Notes228
10 Differential Entropy229
10.1 Preliminaries231
10.2 Definition235
10.3 Joint Differential Entropy,Conditional (Differential) Entropy,and Mutual Information238
10.4 The AEP for Continuous Random Variables245
10.5 Informational Divergence248
10.6 Maximum Differential Entropy Distributions249
Chapter Summary252
Problems255
Historical Notes256
11 Continuous-Valued Channels257
11.1 Discrete-Time Channels257
11.2 The Channel Coding Theorem260
11.3 Proof of the Channel Coding Theorem262
11.3.1 The Converse262
11.3.2 Achievability265
11.4 Memoryless Gaussian Channels270
11.5 Parallel Gaussian Channels272
11.6 Correlated Gaussian Channels278
11.7 The Bandlimited White Gaussian Channel280
11.8 The Bandlimited Colored Gaussian Channel287
11.9 Zero-Mean Gaussian Noise Is the Worst Additive Noise290
Chapter Summary294
Problems296
Historical Notes297
12 Markov Structures299
12.1 Conditional Mutual Independence300
12.2 Full Conditional Mutual Independence309
12.3 Markov Random Field314
12.4 Markov Chain317
Chapter Summary319
Problems320
Historical Notes321
13 Information Inequalities323
13.1 The Region Γ*n325
13.2 Information Expressions in Canonical Form326
13.3 A Geometrical Framework329
13.3.1 Unconstrained Inequalities329
13.3.2 Constrained Inequalities330
13.3.3 Constrained Identities332
13.4 Equivalence of Constrained Inequalities333
13.5 The Implication Problem of Conditional Independence336
Chapter Summary337
Problems338
Historical Notes338
14 Shannon-Type Inequalities339
14.1 The Elemental Inequalities339
14.2 A Linear Programming Approach341
14.2.1 Unconstrained Inequalities343
14.2.2 Constrained Inequalities and Identities344
14.3 A Duality345
14.4 Machine Proving - ITIP347
14.5 Tackling the Implication Problem351
14.6 Minimality of the Elemental Inequalities353
Appendix 14.A:The Basic Inequalities and the Polymatroidal Axioms356
Chapter Summary357
Problems358
Historical Notes360
15 Beyond Shannon-Type Inequalities361
15.1 Characterizations of Γ*2,Γ*3,and Γ*n361
15.2 A Non-Shannon-Type Unconstrained Inequality369
15.3 A Non-Shannon-Type Constrained Inequality374
15.4 Applications380
Chapter Summary383
Problems383
Historical Notes385
16 Entropy and Groups387
16.1 Group Preliminaries388
16.2 Group-Characterizable Entropy Functions393
16.3 A Group Characterization of Γn398
16.4 Information Inequalities and Group Inequalities401
Chapter Summary405
Problems406
Historical Notes408
Part Ⅱ Fundamentals of Network Coding411
17 Introduction411
17.1 The Butterfly Network412
17.2 Wireless and Satellite Communications415
17.3 Source Separation417
Chapter Summary418
Problems418
Historical Notes419
18 The Max-Flow Bound421
18.1 Point-to-Point Communication Networks421
18.2 Examples Achieving the Max-Flow Bound424
18.3 A Class of Network Codes427
18.4 Proof of the Max-Flow Bound429
Chapter Summary431
Problems431
Historical Notes434
19 Single-Source Linear Network Coding:Acyclic Networks435
19.1 Acyclic Networks436
19.2 Linear Network Codes437
19.3 Desirable Properties of a Linear Network Code443
19.3.1 Transformation of a Linear Network Code447
19.3.2 Implementation of a Linear Network Code448
19.4 Existence and Construction449
19.5 Generic Network Codes460
19.6 Static Network Codes468
19.7 Random Network Coding:A Case Study473
19.7.1 How the System Works474
19.7.2 Model and Analysis475
Chapter Summary478
Problems479
Historical Notes482
20 Single-Source Linear Network Coding:Cyclic Networks485
20.1 Delay-Free Cyclic Networks485
20.2 Convolutional Network Codes488
20.3 Decoding of Convolutional Network Codes498
Chapter Summary503
Problems503
Historical Notes504
21 Multi-source Network Coding505
21.1 The Max-Flow Bounds505
21.2 Examples of Application508
21.2.1 Multilevel Diversity Coding508
21.2.2 Satellite Communication Network510
21.3 A Network Code for Acyclic Networks511
21.4 The Achievable Information Rate Region512
21.5 Explicit Inner and Outer Bounds515
21.6 The Converse516
21.7 Achievability521
21.7.1 Random Code Construction524
21.7.2 Performance Analysis527
Chapter Summary536
Problems537
Historical Notes539
Bibliography541
Index561
热门推荐
- 1413111.html
- 1133106.html
- 865971.html
- 2610008.html
- 1196997.html
- 3873372.html
- 3840761.html
- 3564563.html
- 1111963.html
- 1768705.html
- http://www.ickdjs.cc/book_1284671.html
- http://www.ickdjs.cc/book_913879.html
- http://www.ickdjs.cc/book_154041.html
- http://www.ickdjs.cc/book_2217127.html
- http://www.ickdjs.cc/book_2751214.html
- http://www.ickdjs.cc/book_3675305.html
- http://www.ickdjs.cc/book_2863976.html
- http://www.ickdjs.cc/book_3152636.html
- http://www.ickdjs.cc/book_2715975.html
- http://www.ickdjs.cc/book_2825835.html