图书介绍
微积分 第2版 下2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (美)史密斯(Smith,R.T.),(美)明顿(Minton,R.B.)著 著
- 出版社: 北京:高等教育出版社
- ISBN:7040154870
- 出版时间:2004
- 标注页数:1271页
- 文件大小:1MB
- 文件页数:11页
- 主题词:微积分-高等学校-教材-英文
PDF下载
下载说明
微积分 第2版 下PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 0 PRELIMINARIES1
0.1 The Real Numbers and the Cartesian Plane2
0.2 Lines and Functions11
0.3 Graphing Calculators and Computer Algebra Systems24
0.4 Solving Equations34
0.5 Trigonometric Functions40
0.6 Exponential and Logarithmic Functions50
0.7 Transformations of Functions63
0.8 Preview of Calculus72
CHAPTER 1 LIMITS AND CONTINUITY81
1.1 The Concept of Limit82
1.2 Computation of Limits91
1.3 Continuity and Its Consequences102
1.4 Limits Involving Infinity114
1.5 Formal Definition of the Limit124
1.6 Limits and Loss-of-Significance Errors137
CHAPTER 2 DIFFERENTIATION:ALGEBRAIC,TRIGONOMETRIC,EXPONENTIAL AND LOGARITHMIC FUNCTIONS149
2.1 Tangent Lines and Velocity150
2.2 The Derivative164
2.3 Computation of Derivatives:The Power Rule176
2.4 The Product and Quotient Rules187
2.5 Derivatives of Trigonometric Functions196
2.6 Derivatives of Exponential and Logarithmic Functions205
2.7 The Chain Rule213
2.8 Implicit Differentitiion and Related Rates220
2.9 The Mean Value Theorem229
CHAPTER 3 APPLICATIONS OF DIFFERENTIATION241
3.1 Linear Approximations and L'H pital's Rule242
3.2 Newton's Method251
3.3 Maximum and Minimum Values258
3.4 Increasing and Decreasing Functions269
3.5 Concavity278
3.6 Overview of Curve Sketching286
3.7 Optimization298
3.8 Rates of Change in Applications310
CHAPTER 4 INTEGRATION321
4.1 Antiderivatives322
4.2 Sums and Sigma Notation334
4.3 Area342
4.4 The Definite Integral350
4.5 The Fundamental Theorem of Calculus364
4.6 Integration by Substitution374
4.7 Numerical Integration384
CHAPTER 5 APPLICATIONS OF THE DEFINITE INTEGRAL401
5.1 Area between Curves402
5.2 Volume411
5.3 Volumes by Cylindrical Shells425
5.4 Arc Length and Surface Area434
5.5 Projectile Motion442
5.6 Work,Moments and Hydrostatic Force453
5.7 Probability465
CHAPTER 6 EXPONENTIALS,LOGARITHMS AND OTHER TRANSCENDENTAL FUNCTIONS479
6.1 The Natural Logarithm Revisited480
6.2 Inverse Functions487
6.3 The Exponential Function Revisited495
6.4 Growth and Decay Problems503
6.5 Separable Differential Equations512
6.6 Euler's Method521
6.7 The Inverse Trigonometric Functions530
6.8 The Calculus of the Inverse Trigonometric Functions536
6.9 The Hyperbolic Functions543
CHAPTER 7 INTEGRATION TECHNIQUES555
7.1 Review of Formulas and Techniques556
7.2 Integration by Parts560
7.3 Trigonometric Techniques of Integration568
7.4 Integration of Rational Functions Using Partial Fractions578
7.5 Integration Tables and Computer Algebra Systems586
7.6 Indeterminate Forms and L'H?pital's Rule596
7.7 Improper Integrals604
CHAPTER 8 INFINITE SERIES621
8.1 Sequences of Real Numbers622
8.2 Infinite Series636
8.3 The Integral Test and Comparison Tests647
8.4 Alternating Series658
8.5 Absolute Convergence and the Ratio Test666
8.6 Power Series674
8.7 Taylor Series682
8.8 Applications of Taylor Series695
8.9 Fourier Series703
CHAPTER 9 PARAMETRIC EQUATIONS AND POLAR COORDINATES721
9.1 Plane Curves and Parametric Equations722
9.2 Calculus and Parametric Equations732
9.3 Arc Length and Surface Area in Parametric Equations739
9.4 Polar Coordinates746
9.5 Calculus and Polar Coordinates760
9.6 Conic Sections769
9.7 Conic Sections in Polar Coordinates779
CHAPTER 10 VECTORS AND THE GEOMETRY OF SPACE787
10.1 Vectors in the Plane788
10.2 Vectors in Space798
10.3 The Dot Product805
10.4 The Cross Product814
10.5 Lines and Planes in Space827
10.6 Surfaces in Space.836
CHAPTER 11 VECTOR-VALUED FUNCTIONS851
11.1 Vector-Valued Functions852
11.2 The Calculus of Vector-Valued Functions861
11.3 Motion in Space872
11.4 Curvature882
11.5 Tangent and Normal Vectors890
CHAPTER 12 FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION907
12.1 Functions of Several Variables908
12.2 Limits and Continuity924
12.3 Partial Derivatives936
12.4 Tangent Planes and Linear Approximations948
12.5 The Chain Rule960
12.6 The Gradient and Directional Derivatives967
12.7 Extrema of Functions of Several Variables979
12.8 Constrained Optimization and Lagrange Multipliers994
CHAPTER 13 MULTIPLE INTEGRALS1011
13.1 Double Integrals1012
13.2 Area,Volume and Center of Mass1028
13.3 Double Integrals in Polar Coordinates1039
13.4 Surface Area1046
13.5 Triple Integrals1052
13.6 Cylindrical Coordinates1064
13.7 Spherical Coordinates1071
13.8 Change of Variables in Multiple Integrals1079
CHAPTER 14 VECTOR CALCULUS1095
14.1 Vector Fields1096
14.2 Line Integrals1108
14.3 Independence of Path and Conservative Vector Fields1123
14.4 Green's Theorem1134
14.5 Curl and Divergence1143
14.6 Surface Integrals1153
14.7 The Divergence Theorem1167
14.8 Stokes'Theorem1175
APPENDIX A PROOFS OF SELECT THEOREMS1188
APPENDIX B ANSWERS TO ODD-NUMBERED EXERCISES1199
BIBLIOGRAPHY1251
CREDITS1261
INDEX1262
热门推荐
- 2314300.html
- 3449134.html
- 1019940.html
- 2767945.html
- 1226227.html
- 348770.html
- 2098791.html
- 3455150.html
- 2148159.html
- 831552.html
- http://www.ickdjs.cc/book_133686.html
- http://www.ickdjs.cc/book_1109658.html
- http://www.ickdjs.cc/book_3192607.html
- http://www.ickdjs.cc/book_1615242.html
- http://www.ickdjs.cc/book_2375619.html
- http://www.ickdjs.cc/book_3328346.html
- http://www.ickdjs.cc/book_1999474.html
- http://www.ickdjs.cc/book_3281181.html
- http://www.ickdjs.cc/book_3316826.html
- http://www.ickdjs.cc/book_2069278.html