图书介绍
几何数值分析 第2版 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (瑞士)E.海尔;(瑞士)C.卢比希;(瑞士)G.万纳著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7519219372
- 出版时间:2016
- 标注页数:644页
- 文件大小:92MB
- 文件页数:663页
- 主题词:几何积分论-英文;数值积分-英文
PDF下载
下载说明
几何数值分析 第2版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ.Examples and Numerical Experiments1
Ⅰ.1 First Problems and Methods1
Ⅰ.1.1 The Lotka-Volterra Model1
Ⅰ.1.2 First Numerical Methods3
Ⅰ.1.3 The Pendulum as a Hamiltonian System4
Ⅰ.1.4 The St?rmer-Verlet Scheme7
Ⅰ.2 The Kepler Problem and the Outer Solar System8
Ⅰ.2.1 Angular Momentum and Kepler's Second Law9
Ⅰ.2.2 Exact Integration of the Kepler Problem10
Ⅰ.2.3 Numerical Integration of the Kepler Problem12
Ⅰ.2.4 The Outer Solar System13
Ⅰ.3 The Hénon-Heiles Model15
Ⅰ.4 Molecular Dynamics18
Ⅰ.5 Highly Oscillatory Problems21
Ⅰ.5.1 A Fermi-Pasta-Ulam Problem21
Ⅰ.5.2 Application of Classical Integrators23
Ⅰ.6 Exercises24
Ⅱ.Numerical Integrators27
Ⅱ.1 Runge-Kutta and Collocation Methods27
Ⅱ.1.1 Runge-Kutta Methods28
Ⅱ.1.2 Collocation Methods30
Ⅱ.1.3 Gauss and Lobatto Collocation34
Ⅱ.1.4 Discontinuous Collocation Methods35
Ⅱ.2 Partitioned Runge-Kutta Methods38
Ⅱ.2.1 Definition and First Examples38
Ⅱ.2.2 Lobatto ⅢA-ⅢB Pairs40
Ⅱ.2.3 Nystr?m Methods41
Ⅱ.3 The Adjoint of a Method42
Ⅱ.4 Composition Methods43
Ⅱ.5 Splitting Methods47
Ⅱ.6 Exercises50
Ⅲ.Order Conditions,Trees and B-Series51
Ⅲ.1 Runge-Kutta Order Conditions and B-Series51
Ⅲ.1.1 Derivation of the Order Conditions51
Ⅲ.1.2 B-Series56
Ⅲ.1.3 Composition of Methods59
Ⅲ.1.4 Composition of B-Series61
Ⅲ.1.5 The Butcher Group64
Ⅲ.2 Order Conditions for Partitioned Runge-Kutta Methods66
Ⅲ.2.1 Bi-Coloured Trees and P-Series66
Ⅲ.2.2 Order Conditions for Partitioned Runge-Kutta Methods68
Ⅲ.2.3 OrderConditions for Nystr?m Methods69
Ⅲ.3 Order Conditions for Composition Methods71
Ⅲ.3.1 Introduction71
Ⅲ.3.2 The General Case73
Ⅲ.3.3 Reduction of the Order Conditions75
Ⅲ.3.4 Order Conditions for Splitting Methods80
Ⅲ.4 The Baker-Campbell-Hausdorff Formula83
Ⅲ.4.1 Derivative of the Exponential and Its Inverse83
Ⅲ.4.2 The BCH Formula84
Ⅲ.5 Order Conditions via the BCH Formula87
Ⅲ.5.1 Calculus of Lie Derivatives87
Ⅲ.5.2 Lie Brackets and Commutativity89
Ⅲ.5.3 Splitting Methods91
Ⅲ.5.4 Composition Methods92
Ⅲ.6 Exercises95
Ⅳ.Conservation of First Integrals and Methods on Manifolds97
Ⅳ.1 Examples of First Integrals97
Ⅳ.2 Quadratic Invariants101
Ⅳ.2.1 Runge-Kutta Methods101
Ⅳ.2.2 Partitioned Runge-Kutta Methods102
Ⅳ.2.3 Nystr?m Methods104
Ⅳ.3 Polynomial Invariants105
Ⅳ.3.1 The Determinant as a First Integral105
Ⅳ.3.2 Isospectral Flows107
Ⅳ.4 Projection Methods109
Ⅳ.5 Numerical Methods Based on Local Coordinates113
Ⅳ.5.1 Manifolds and the Tangent Space114
Ⅳ.5.2 Differential Equations on Manifolds115
Ⅳ.5.3 Numerical Integrators on Manifolds116
Ⅳ.6 Differential Equations on Lie Groups118
Ⅳ.7 Methods Based on the Magnus Series Expansion121
Ⅳ.8 Lie Group Methods123
Ⅳ.8.1 Crouch-Grossman Methods124
Ⅳ.8.2 Munthe-Kaas Methods125
Ⅳ.8.3 Further Coordinate Mappings128
Ⅳ.9 Geometric Numerical Integration Meets Geometric Numerical Linear Algebra131
Ⅳ.9.1 Numerical Integration on the Stiefel Manifold131
Ⅳ.9.2 Differential Equations on the Grassmann Manifold135
Ⅳ.9.3 Dynamical Low-Rank Approximation137
Ⅳ.10 Exercises139
Ⅴ.Symmetric Integration and Reversibility143
Ⅴ.1 Reversible Differential Equations and Maps143
Ⅴ.2 Symmetric Runge-Kutta Methods146
Ⅴ.2.1 Collocation and Runge-Kutta Methods146
Ⅴ.2.2 Partitioned Runge-Kutta Methods148
Ⅴ.3 Symmetric Composition Methods149
Ⅴ.3.1 Symmetric Composition of First Order Methods150
Ⅴ.3.2 Symmetric Composition of Symmetric Methods154
Ⅴ.3.3 Effective Order and Processing Methods158
Ⅴ.4 Symmetric Methods on Manifolds161
Ⅴ.4.1 Symmetric Projection161
Ⅴ.4.2 Symmetric Methods Based on Local Coordinates166
Ⅴ.5 Energy-Momentum Methods and Discrete Gradients171
Ⅴ.6 Exercises176
Ⅵ.Symplectic Integration of Hamiltonian Systems179
Ⅵ.1 Hamiltonian Systems180
Ⅵ.1.1 Lagrange's Equations180
Ⅵ.1.2 Hamilton's Canonical Equations181
Ⅵ.2 Symplectic Transformations182
Ⅵ.3 First Examples of Symplectic Integrators187
Ⅵ.4 Symplectic Runge-Kutta Methods191
Ⅵ.4.1 Criterion of Symplecticity191
Ⅵ.4.2 Connection Between Symplectic and Symmetric Methods194
Ⅵ.5 Generating Functions195
Ⅵ.5.1 Existence of Generating Functions195
Ⅵ.5.2 Generating Function for Symplectic Runge-Kutta Methods198
Ⅵ.5.3 The Hamilton-Jacobi Partial Differential Equation200
Ⅵ.5.4 Methods Based on Generating Functions203
Ⅵ.6 Variational Integrators204
Ⅵ.6.1 Hamilton's Principle204
Ⅵ.6.2 Discretization of Hamilton's Principle206
Ⅵ.6.3 Symplectic Partitioned Runge-Kutta Methods Revisited208
Ⅵ.6.4 Noether's Theorem210
Ⅵ.7 Characterization of Symplectic Methods212
Ⅵ.7.1 B-Series Methods Conserving Quadratic First Integrals212
Ⅵ.7.2 Characterization of Symplectic P-Series(and B-Series)217
Ⅵ.7.3 Irreducible Runge-Kutta Methods220
Ⅵ.7.4 Characterization of Irreducible Symplectic Methods222
Ⅵ.8 Conjugate Symplecticity222
Ⅵ.8.1 Examples and Order Conditions223
Ⅵ.8.2 Near Conservation of Quadratic First Integrals225
Ⅵ.9 Volume Preservation227
Ⅵ.10 Exercises233
Ⅶ.Non-Canonical Hamiltonian Systems237
Ⅶ.1 Constrained Mechanical Systems237
Ⅶ.1.1 Introduction and Examples237
Ⅶ.1.2 Hamiltonian Formulation239
Ⅶ.1.3 A Symplectic First Order Method242
Ⅶ.1.4 SHAKE and RATTLE245
Ⅶ.1.5 The Lobatto ⅢA-ⅢB Pair247
Ⅶ.1.6 Splitting Methods252
Ⅶ.2 Poisson Systems254
Ⅶ.2.1 Canonical Poisson Structure254
Ⅶ.2.2 General Poisson Structures256
Ⅶ.2.3 Hamiltonian Systems on Symplectic Submanifolds258
Ⅶ.3 The Darboux-Lie Theorem261
Ⅶ.3.1 Commutativity of Poisson Flows and Lie Brackets261
Ⅶ.3.2 Simultaneous Linear Partial Differential Equations262
Ⅶ.3.3 Coordinate Changes and the Darboux-Lie Theorem265
Ⅶ.4 Poisson Integrators268
Ⅶ.4.1 Poisson Maps and Symplectic Maps268
Ⅶ.4.2 Poisson Integrators270
Ⅶ.4.3 Integrators Based on the Darboux-Lie Theorem272
Ⅶ.5 Rigid Body Dynamics and Lie-Poisson Systems274
Ⅶ.5.1 History of the Euler Equations275
Ⅶ.5.2 Hamiltonian Formulation of Rigid Body Motion278
Ⅶ.5.3 Rigid Body Integrators280
Ⅶ.5.4 Lie-poisson Systems286
Ⅶ.5.5 Lie-Poisson Reduction289
Ⅶ.6 Reduced Models of Quantum Dynamics293
Ⅶ.6.1 Hamiltonian Structure of the Schr?dinger Equation293
Ⅶ.6.2 The Dirac-Frenkel Variational Principle295
Ⅶ.6.3 Gaussian Wavepacket Dynamics296
Ⅶ.6.4 A Splitting Integrator for Gaussian Wavepackets298
Ⅶ.7 Exercises301
Ⅷ.Structure-Preserving Implementation303
Ⅷ.1 Dangers of Using Standard Step Size Control303
Ⅷ.2 Time Transformations306
Ⅷ.2.1 Symplectic Integration306
Ⅷ.2.2 Reversible Integration309
Ⅷ.3 Structure-Preserving Step Size Control310
Ⅷ.3.1 Proportional,Reversible Controllers310
Ⅷ.3.2 Integrating,Reversible Controllers314
Ⅷ.4 Multiple Time Stepping316
Ⅷ.4.1 Fast-Slow Splitting:the Impulse Method317
Ⅷ.4.2 Averaged Forces319
Ⅷ.5 Reducing Rounding Errors322
Ⅷ.6 Implementation of Implicit Methods325
Ⅷ.6.1 Starting Approximations326
Ⅷ.6.2 Fixed-Point Versus Newton Iteration330
Ⅷ.7 Exercises335
Ⅸ.Backward Error Analysis and Structure Preservation337
Ⅸ.1 Modified Differential Equation-Examples337
Ⅸ.2 Modified Equations of Symmetric Methods342
Ⅸ.3 Modified Equations of Symplectic Methods343
Ⅸ.3.1 Existence of a Local Modified Hamiltonian343
Ⅸ.3.2 Existence of a Global Modified Hamiltonian344
Ⅸ.3.3 Poisson Integrators347
Ⅸ.4 Modified Equations of Splitting Methods348
Ⅸ.5 Modified Equations of Methods on Manifolds350
Ⅸ.5.1 Methods on Manifolds and First Integrals350
Ⅸ.5.2 Constrained Hamiltonian Systems352
Ⅸ.5.3 Lie-Poisson Integrators354
Ⅸ.6 Modified Equations for Variable Step Sizes356
Ⅸ.7 Rigorous Estimates-Local Error358
Ⅸ.7.1 Estimation of the Derivatives of the Numerical Solution360
Ⅸ.7.2 Estimation of the Coefficients of the Modified Equation362
Ⅸ.7.3 Choice of N and the Estimation of the Local Error364
Ⅸ.8 Long-Time Energy Conservation366
Ⅸ.9 Modified Equation in Terms of Trees369
Ⅸ.9.1 B-Series ofthe Modified Equation369
Ⅸ.9.2 Elementary Hamiltonians373
Ⅸ.9.3 Modified Hamiltonian375
Ⅸ.9.4 First Integrals Close to the Hamiltonian375
Ⅸ.9.5 Energy Conservation:Examples and Counter-Examples379
Ⅸ.10 Extension to Partitioned Systems381
Ⅸ.10.1 P-Series of the Modified Equation381
Ⅸ.10.2 Elementary Hamiltonians384
Ⅸ.11 Exercises386
Ⅹ.Hamiltonian Perturbation Theory and Symplectic Integrators389
Ⅹ.1 Completely Integrable Hamiltonian Systems390
Ⅹ.1.1 Local Integration by Quadrature390
Ⅹ.1.2 Completely Integrable Systems393
Ⅹ.1.3 Action-Angle Variables397
Ⅹ.1.4 Conditionally Periodic Flows399
Ⅹ.1.5 The Toda Lattice-an Integrable System402
Ⅹ.2 Transformations in the Perturbation Theory for Integrable Systems404
Ⅹ.2.1 The Basic Scheme of Classical Perturbation Theory405
Ⅹ.2.2 Lindstedt-Poincaré Series406
Ⅹ.2.3 Kolmogorov's Iteration410
Ⅹ.2.4 Birkhoff Normalization Near an Invariant Torus412
Ⅹ.3 Linear Error Growth and Near-Preservation of First Integrals413
Ⅹ.4 Near-Invariant Tori on Exponentially Long Times417
Ⅹ.4.1 Estimates of Perturbation Series417
Ⅹ.4.2 Near-Invariant Tori of Perturbed Integrable Systems421
Ⅹ.4.3 Near-Invariant Tori of Symplectic Integrators422
Ⅹ.5 Kolmogorov's Theorem on Invariant Tori423
Ⅹ.5.1 Kolmogorov's Theorem423
Ⅹ.5.2 KAM Tori under Symplectic Discretization428
Ⅹ.6 Invariant Tori of Symplectic Maps430
Ⅹ.6.1 A KAM Theorem for Symplectic Near-Identity Maps431
Ⅹ.6.2 Invariant Tori of Symplectic Integrators433
Ⅹ.6.3 Strongly Non-Resonant Step Sizes433
Ⅹ.7 Exercises434
Ⅺ.Reversible Perturbation Theory and Symmetric Integrators437
Ⅺ.1 Integrable Reversible Systems437
Ⅺ.2 Transformations in Reversible Perturbation Theory442
Ⅺ.2.1 The Basic Scheme of Reversible Perturbation Theory443
Ⅺ.2.2 Reversible Perturbation Series444
Ⅺ.2.3 Reversible KAM Theory445
Ⅺ.2.4 Reversible Birkhoff-Type Normalization447
Ⅺ.3 Linear Error Growth and Near-Preservation of First Integrals448
Ⅺ.4 Invariant Tori underReversible Discretization451
Ⅺ.4.1 Near-Invariant Tori over Exponentially Long Times451
Ⅺ.4.2 A KAM Theorem for Reversible Near-Identity Maps451
Ⅺ.5 Exercises453
Ⅻ.Dissipatively Perturbed Hamiltonian and Reversible Systems455
Ⅻ.1 Numerical Experiments with Van der Pol's Equation455
Ⅻ.2 Averaging Transformations458
Ⅻ.2.1 The Basic Scheme of Averaging458
Ⅻ.2.2 Perturbation Series459
Ⅻ.3 Attractive Invariant Manifolds460
Ⅻ.4 Weakly Attractive Invariant Tori of Perturbed Integrable Systems464
Ⅻ.5 Weakly Attractive Invariant Tori of Numerical Integrators465
Ⅻ.5.1 Modified Equations of Perturbed Differential Equations466
Ⅻ.5.2 Symplectic Methods467
Ⅻ.5.3 Symmetric Methods469
Ⅻ.6 Exercises469
ⅩⅢ.Oscillatory Differential Equations with Constant High Frequencies471
ⅩⅢ.1 Towards Longer Time Steps in Solving Oscillatory Equations of Motion471
ⅩⅢ.1.1 The St?rmer-Verlet Method vs.Multiple Time Scales472
ⅩⅢ.1.2 Gautschi's and Deuflhard's Trigonometric Methods473
ⅩⅢ.1.3 The Impulse Method475
ⅪⅢ.1.4 The Mollified Impulse Method476
ⅩⅢ.1.5 Gautschi's Method Revisited477
ⅩⅢ.1.6 Two-Force Methods478
ⅩⅢ.2 A Nonlinear Model Problem and Numerical Phenomena478
ⅩⅢ.2.1 Time Scales in the Fermi-Pasta-Ulam Problem479
ⅩⅢ.2.2 Numerical Methods481
ⅩⅢ.2.3 Accuracy Comparisons482
ⅩⅢ.2.4 Energy Exchange between Stiff Components483
ⅩⅢ.2.5 Near-Conservation of Total and Oscillatory Energy484
ⅩⅢ.3 Principal Terms of the Modulated Fourier Expansion486
ⅩⅢ.3.1 Decomposition of the Exact Solution486
ⅩⅢ.3.2 Decomposition of the Numerical Solution488
ⅩⅢ.4 Accuracy and Slow Exchange490
ⅩⅢ.4.1 Convergence Properties on Bounded Time Intervals490
ⅩⅢ.4.2 Intra-Oscillatory and Oscillatory-Smooth Exchanges494
ⅩⅢ.5 Modulated Fourier Expansions496
ⅩⅢ.5.1 Expansion of the Exact Solution496
ⅩⅢ.5.2 Expansion of the Numerical Solution498
ⅩⅢ.5.3 Expansion of the Velocity Approximation502
ⅩⅢ.6 Almost-Invariants of the Modulated Fourier Expansions503
ⅪⅢ.6.1 The Hamiltonian of the Modulated Fourier Expansion503
ⅩⅢ.6.2 A Formal Invariant Close to the Oscillatory Energy505
ⅩⅢ.6.3 Almost-Invariants of the Numerical Method507
ⅩⅢ.7 Long-Time Near-Conservation of Total and Oscillatory Energy510
ⅩⅢ.8 Energy Behaviour of the St?rmer-Verlet Method513
ⅩⅢ.9 Systems with Several Constant Frequencies516
ⅩⅢ.9.1 Oscillatory Energies and Resonances517
ⅩⅢ.9.2 Multi-Frequency Modulated Fourier Expansions519
ⅩⅢ.9.3 Almost-Invariants of the Modulation System521
ⅩⅢ.9.4 Long-Time Near-Conservation of Total and Oscillatory Energies524
ⅩⅢ.10 Systems with Non-Constant Mass Matrix526
ⅩⅢ.11 Exercises529
Ⅹ.Oscillatory Differential Equations with Varying High Frequencies531
ⅩⅣ.1 Linear Systems with Time-Dependent Skew-Hermitian Matrix531
ⅩⅣ.1.1 Adiabatic Transformation and Adiabatic Invariants531
ⅩⅣ.1.2 Adiabatic Integrators536
ⅩⅣ.2 Mechanical Systems with Time-Dependent Frequencies539
ⅩⅣ.2.1 Canonical Transformation to Adiabatic Variables540
ⅩⅣ.2.2 Adiabatic Integrators547
ⅩⅣ.2.3 Error Analysis of the Impulse Method550
ⅩⅣ.2.4 Error Analysis of the Mollified Impulse Method554
ⅩⅣ.3 Mechanical Systems with Solution-Dependent Frequencies555
ⅩⅣ.3.1 Constraining Potentials555
ⅩⅣ.3.2 Transformation to Adiabatic Variables558
ⅩⅣ.3.3 Integrators in Adiabatic Variables563
ⅩⅣ.3.4 Analysis of Multiple Time-Stepping Methods564
ⅩⅣ.4 Exercises564
ⅩⅤ.Dynamics of Multistep Methods567
ⅩⅤ.1 Numerical Methods and Experiments567
ⅩⅤ.1.1 Linear Multistep Methods567
ⅩⅤ.1.2 Multistep Methods for Second Order Equations569
ⅩⅤ.1.3 Partitioned Multistep Methods572
ⅩⅤ.2 The Underlying One-Step Method573
ⅩⅤ.2.1 Strictly Stable Multistep methods573
ⅩⅤ.2.2 Formal Analysis for Weakly Stable Methods575
ⅩⅤ.3 Backward Error Analysis576
ⅩⅤ.3.1 Modified Equation for Smooth Numerical Solutions576
ⅩⅤ.3.2 Parasitic Modified Equations579
ⅩⅤ.4 Can Multistep Methods be Symplectic?585
ⅩⅤ.4.1 Non-Symplecticity of the Underlying One-Step Method585
ⅩⅤ.4.2 Symplecticity in the Higher-Dimensional Phase Space587
ⅩⅤ.4.3 Modified Hamiltonian of Multistep Methods589
ⅩⅤ.4.4 Modified Quadratic First Integrals591
ⅩⅤ.5 Long-Term Stability592
ⅩⅤ.5.1 Role of Growth Parameters592
ⅩⅤ.5.2 Hamiltonian of the Full Modified System594
ⅩⅤ.5.3 Long-Time Bounds for Parasitic Solution Components596
ⅩⅤ.6 Explanation of the Long-Time Behaviour600
ⅩⅤ.6.1 Conservation of Energy and Angular Momentum600
ⅩⅤ.6.2 Linear Error Growth for Integrable Systems601
ⅩⅤ.7 Practical Considerations602
ⅩⅤ.7.1 Numerical Instabilities and Resonances602
ⅩⅤ.7.2 Extension to Variable Step Sizes605
ⅩⅤ.8 Multi-Value or General Linear Methods609
ⅩⅤ.8.1 Underlying One-Step Method and Backward Error Analysis609
ⅩⅤ.8.2 Symplecticity and Symmetry611
ⅩⅤ.8.3 Growth Parameters614
ⅩⅤ.9 Exercises615
Bibliography617
Index637
热门推荐
- 580656.html
- 1070805.html
- 54801.html
- 3723748.html
- 1472471.html
- 224114.html
- 951865.html
- 142887.html
- 3101754.html
- 2704804.html
- http://www.ickdjs.cc/book_3161306.html
- http://www.ickdjs.cc/book_699325.html
- http://www.ickdjs.cc/book_927428.html
- http://www.ickdjs.cc/book_866055.html
- http://www.ickdjs.cc/book_1571834.html
- http://www.ickdjs.cc/book_3346038.html
- http://www.ickdjs.cc/book_1734626.html
- http://www.ickdjs.cc/book_391333.html
- http://www.ickdjs.cc/book_810364.html
- http://www.ickdjs.cc/book_1016936.html