图书介绍
经典动力学现代方法2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- JORGE V.JOSé,EUGENE J.SALETAN 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7506271796
- 出版时间:2004
- 标注页数:670页
- 文件大小:139MB
- 文件页数:696页
- 主题词:
PDF下载
下载说明
经典动力学现代方法PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 FUNDAMENTALS OF MECHANICS1
1.1 Elementary Kinematics1
1.1.1 Trajectories of Point Particles1
1.1.2 Position,Velocity,and Acceleration3
1.2 Principles of Dynamics5
1.2.1 Newton's Laws5
1.2.2 The Two Principles6
Principle 17
Principle 27
Discussion9
1.2.3 Consequences of Newton's Equations10
Introduction10
Force is a Vector11
1.3 One-Particle Dynamical Variables13
1.3.1 Momentum14
1.3.2 Angular Momentum14
1.3.3 Energy and Work15
In Three Dimensions15
Application to One-Dimensional Motion18
1.4 Many-Particle Systems22
1.4.1 Momentum and Center of Mass22
Center of Mass22
Momentum24
Variable Mass24
1.4.2 Energy26
1.4.3 Angular Momentum27
1.5 Examples29
1.5.1 Velocity Phase Space and Phase Portraits29
The Cosine Potential29
The Kepler Problem31
1.5.2 A System with Energy Loss34
1.5.3 Noninertial Frames and the Equivalence Principle38
Equivalence Principle38
Rotating Frames41
Problems42
2 LAGRANGIAN FORMULATION OF MECHANICS48
2.1 Constraints and Configuration Manifolds49
2.1.1 Constraints49
Constraint Equations49
Constraints and Work50
2.1.2 Generalized Coordinates54
2.1.3 Examples of Configuration Manifolds57
The Finite Line57
The Circle57
The Plane57
The Two-Sphere S257
The Double Pendulum60
Discussion60
2.2 Lagrange's Equations62
2.2.1 Derivation of Lagrange's Equations62
2.2.2 Transformations of Lagrangians67
Equivalent Lagrangians67
Coordinate Independence68
Hessian Condition69
2.2.3 Conservation of Energy70
2.2.4 Charged Particle in an Electromagnetic Field72
The Lagrangian72
A Time-Dependent Coordinate Transformation74
2.3 Central Force Motion77
2.3.1 The General Central Force Problem77
Statement of the Problem;Reduced Mass77
Reduction to Two Freedoms78
The Equivalent One-Dimensional Problem79
2.3.2 The Kepler Problem84
2.3.3 Bertrand's Theorem88
2.4 The Tangent Bundle TQ92
2.4.1 Dynamics on TQ92
Velocities Do Not Lie in Q92
Tangent Spaces and the Tangent Bundle93
Lagrange's Equations and Trajectories on TQ95
2.4.2 TQ as a Differential Manifold97
Differential Manifolds97
Tangent Spaces and Tangent Bundles100
Application to Lagrange's Equations102
Problems103
3 TOPICS IN LAGRANGIAN DYNAMICS108
3.1 The Variational Principle and Lagrange's Equations108
3.1.1 Derivation108
The Action108
Hamilton's Principle110
Discussion112
3.1.2 Inclusion of Constraints114
3.2 Symmetry and Conservation118
3.2.1 Cyclic Coordinates118
Invariant Submanifolds and Conservation of Momentum118
Transformations,Passive and Active119
Three Examples123
3.2.2 Noether's Theorem124
Point Transformations124
The Theorem125
3.3 Nonpotential Forces128
3.3.1 Dissipative Forces in the Lagrangian Formalism129
Rewriting the EL Equations129
The Dissipative and Rayleigh Functions129
3.3.2 The Damped Harmonic Oscillator131
3.3.3 Comment on Time-Dependent Forces134
3.4 A Digression on Geometry134
3.4.1 Some Geometry134
Vector Fields134
One-Forms135
The Lie Derivative136
3.4.2 The Euler-Lagrange Equations138
3.4.3 Noether's Theorem139
One-Parameter Groups139
The Theorem140
Problems143
4 SCATTERING AND LINEAR OSCILLATIONS147
4.1 Scattering147
4.1.1 Scattering by Central Forces147
General Considerations147
The Rutherford Cross Section153
4.1.2 Tne Inverse Scattering Problem154
General Treatment154
Example:Coulomb Scattering156
4.1.3 Chaotic Scattering,Cantor Sets,and Fractal Dimension157
Two Disks158
Three Disks,Cantor Sets162
Fractal Dimension and Lyapunov Exponent166
Some Further Results169
4.1.4 Scattering of a Charge by a Magnetic Dipole170
The St?rmer Problem170
The Equatorial Limit171
The General Case174
4.2 Linear Oscillations178
4.2.1 Linear Approximation:Small Vibrations178
Linearization178
Normal Modes180
4.2.2 Commensurate and Incommensurate Frequencies183
The Invariant Torus T183
The Poincaré Map185
4.2.3 A Chain of Coupled Oscillators187
General Solution187
The Finite Chain189
4.2.4 Forced and Damped Oscillators192
Forced Undamped Oscillator192
Foreed Damped Oscillator193
Problems197
5 HAMILTONIAN FORMULATION OF MECHANICS201
5.1 Hamilton's Canonical Equations202
5.1.1 Local Considerations202
From the Lagrangian to the Hamiltonian202
A Brief Review of Special Relativity207
The Relativistic Kepler Problem211
5.1.2 The Legendre Transform212
5.1.3 Unified Coordinates on T*Q and Poisson Brackets215
The ξ Notation215
Variational Derivation of Hamilton's Equations217
Poisson Brackets218
Poisson Brackets and Hamiltonian Dynamics222
5.2 Symplectic Geometry224
5.2.1 The Cotangent Manifold224
5.2.2 Two-Forms225
5.2.3 The Symplectic Form ω226
5.3 Canonical Transformations231
5.3.1 Local Considerations231
Reduction on T*Q by Constants of the Motion231
Definition of Canonical Transformations232
Changes Induced by Canonical Transformations234
Two Examples236
5.3.2 Intrinsic Approach239
5.3.3 Generating Functions of Canonical Transformations240
Generating Functions240
The Generating Functions Gives the New Hamiltonian242
Generating Functions of Type244
5.3.4 One-Parameter Groups of Canonical Transformations248
Infinitesimal Generators of One-Parameter Groups;Hamiltonian Flows249
The Hamiltonian Noether Theorem251
Flows and Poisson Brackets252
5.4 Two Theorems:Liouville and Darboux253
5.4.1 Liouville's Volume Theorem253
Volume253
Integration on T*Q;The Liouville Theorem257
Poincaré Invariants260
Density of States261
5.4.2 Darboux's Theorem268
The Theorem269
Reduction270
Problems275
Canonicity Implies PB Preservation280
6 TOPICS IN HAMILTONIAN DYNAMICS284
6.1 The Hamilton-Jacobi Method284
6.1.1 The Hamilton-Jacobi Equation285
Derivation285
Properties of Solutions286
Relation to the Action288
6.1.2 Separation of Variables290
The Method of Separation291
Example:Charged Particle in a Magnetic Field294
6.1.3 Geometry and the HJ Equation301
6.1.4 The Analogy Between Optics and the HJ Method303
6.2 Completely Integrable Systems307
6.2.1 Action-Angle Variables307
Invariant Tori307
The φαand Jα309
The Canonical Transformation to AA Variables311
Example:A Particle on a Vertical Cylinder314
6.2.2 Liouville's Integrability Theorem320
Complete Integrability320
The Tori321
The Jα323
Example:the Neumann Problem324
6.2.3 Motion on the Tori328
Rational and Irrational Winding Lines328
Fourier Series331
6.3 Perturbation Theory332
6.3.1 Example:The Quartic Oscillator;Secular Perturbation Theory332
6.3.2 Hamiltonian Perturbation Theory336
Perturbation via Canonical Transformations337
Averaging339
Canonical Perturbation Theory in One Freedom340
Canonical Perturbation Theory in Many Freedoms346
The Lie Transformation Method351
Example:The Quartic Oscillator357
6.4 Adiabatic Invariance359
6.4.1 The Adiabatic Theorem360
Oscillator with Time-Dependent Frequency360
The Theorem361
Remarks on N>1363
6.4.2 Higher Approximations364
6.4.3 The Hannay Angle365
6.4.4 Motion of a Charged Particle in a Magnetic Field371
The Action Integral371
Three Magnetic Adiabatic Invariants374
Problems377
7 NONLINEAR DYNAMICS382
7.1 Nonlinear Oscillators383
7.1.1 A Model System383
7.1.2 Driven Quartic Oscillator386
Damped Driven Quartic Oscillator;Harmonic Analysis387
Undamped Driven Quartic Oscillator390
7.1.3 Example:The van der Pol Oscillator391
7.2 Stability of Solutions396
7.2.1 Stability of Autonomous Systems397
Definitions397
The Poincaré-Bendixon Theorem399
Linearization400
7.2.2 Stability of Nonautonomous Systems410
The Poincaré Map410
Linearization of Discrete Maps413
Example:The Linearized Hénon Map417
7.3 Parametric Oscillators418
7.3.1 Floquet Theory419
The Floquet Operator R419
Standard Basis420
Eigenvalues of R and Stability421
Dependence on G424
7.3.2 The Vertically Driven Pendulum424
The Mathieu Equation424
Stability of the Pendulum426
The Inverted Pendulum427
Damping429
7.4 Discrete Maps;Chaos431
7.4.1 The Logistic Map431
Definition432
Fixed Points432
Period Doubling434
Universality442
Further Remarks444
7.4.2 The Circle Map445
The Damped Driven Pendulum445
The Standard Sine Circle Map446
Rotation Number and the Devil's Staircase447
Fixed Points of the Circle Map450
7.5 Chaos in Hamiltonian Systems and the KAM Theorem452
7.5.1 The Kicked Rotator453
The Dynamical System453
The Standard Map454
Poincaré Map of the Perturbed System455
7.5.2 The Hénon Map460
7.5.3 Chaos in Hamiltonian Systems463
Poincaré-Birkhoff Theorem464
The Twist Map466
Numbers and Properties of the Fixed Points467
The Homoclinic Tangle468
The Transition to Chaos472
7.5.4 The KAM Theorem474
Background474
Two Conditions:Hessian and Diophantine475
The Theorem477
A Brief Description of the Proof of KAM480
Problems483
Number Theory486
The Unit Interval486
A Diophantine Condition487
The Circle and the Plane488
KAM and Continued Fractions489
8 RIGID BODIES492
8.1 Introduction492
8.1.1 Rigidity and Kinematics492
Definition492
The Angular Velocity Vector ω493
8.1.2 Kinetic Energy and Angular Momentum495
Kinetic Energy495
Angular Momentum498
8.1.3 Dynamics499
Space and Body Systems499
Dynamical Equations500
Example:The Gyrocompass503
Motion of the Angular Momentum J505
Fixed Points and Stability506
The Poinsot Construction508
8.2 The Lagrangian and Hamiltonian Formulations510
8.2.1 The Configuration Manifold QR510
Inertial,Space,and Body Systems510
The Dimension of QR511
The Structure of QR512
8.2.2 The Lagrangian514
Kinetic Energy514
The Constraints515
8.2.3 The Euler-Lagrange Equations516
Derivation516
The Angular Velocity Matrix Ω518
8.2.4 The Hamiltonian Formalism519
8.2.5 Equivalence to Euler's Equations520
Antisymmetric Matrix-Vector Correspondence520
The Torque521
The Angular Velocity Pseudovector and Kinematics522
Transformations of Velocities523
Hamilton's Canonical Equations524
8.2.6 Discussion525
8.3 Euler Angles and Spinning Tops526
8.3.1 Euler Angles526
Definition526
R in Terms of the Euler Angles527
Angular Velocities529
Discussion531
8.3.2 Geometric Phase for a Rigid Body533
8.3.3 Spinning Tops535
The Lagrangian and Hamiltonian536
The Motion of the Top537
Nutation and Precession539
Quadratic Potential;the Neumann Problem542
8.4 Cayley-Klein Parameters543
8.4.1 2×2 Matrix Representation of 3-Vectors and Rotations543
3-Vectors543
Rotations544
8.4.2 The Pauli Matrices and CK Parameters544
Definitions544
Finding RU545
Axis and Angle in terms of the CK Parameters546
8.4.3 Relation Between SU(2)and SO(3)547
Problems549
9 CONTINUUM DYNAMICS553
9.1 Lagrangian Formulation of Continuum Dynamics553
9.1.1 Passing to the Continuum Limit553
The Sine-Gordon Equation553
The Wave and Klein-Gordon Equations556
9.1.2 The Variational Principle557
Introduction557
Variational Derivation of the EL Equations557
The Functional Derivative560
Discussion560
9.1.3 Maxwell's Equations561
Some Special Relativity561
Electromagnetic Fields562
The Lagrangian and the EL Equations564
9.2 Noether's Theorem and Relativistic Fields565
9.2.1 Noether's Theorem565
The Theorem565
Conserved Currents566
Energy and Momentum in the Field567
Example:The Electromagnetic Energy-Momentum Tensor569
9.2.2 Relativistic Fields571
Lorentz Transformations571
Lorentz Invariant L and Conservation572
Free Klein-Gordon Fields576
Complex K-G Field and Interaction with the Maxwell Field577
Discussion of the Coupled Field Equations579
9.2.3 Spinors580
Spinor Fields580
A Spinor Field Equation582
9.3 The Hamiltonian Formalism583
9.3.1 The Hamiltonian Formalism for Fields583
Definitions583
The Canonical Equations584
Poisson Brackets586
9.3.2 Expansion in Orthonormal Functions588
Orthonormal Functions589
Particle-like Equations590
Example:Klein-Gordon591
9.4 Nonlinear Field Theory594
9.4.1 The Sine-Gordon Equation594
Soliton Solutions595
Properties of sG Solitons597
Multiple-Soliton Solutions599
Generating Soliton Solutions601
Nonsoliton Solutions605
Josephson Junctions608
9.4.2 The Nonlinear K-G Equation608
The Lagrangian and the EL Equation608
Kinks609
9.5 Fluid Dynamics610
9.5.1 The Euler and Navier-Stokes Equations611
Substantial Derivative and Mass Conservation611
Euler's Equation612
Viscosity and Incompressibility614
The Navier-Stokes Equations615
Turbulence616
9.5.2 The Burgers Equation618
The Equation618
Asymptotic Solution620
9.5.3 Surface Waves622
Equations for the Waves622
Linear Gravity Waves624
Nonlinear Shallow Water Waves:the KdV Equation626
Single KdV Solitons629
Multiple KdV Solitons631
9.6 Hamiltonian Formalism for Nonlinear Field Theory632
9.6.1 The Field Theory Analog of Particle Dynamics633
From Particles to Fields633
Dynamical Variables and Equations of Motion634
9.6.2 The Hamiltonian Formalism634
The Gradient634
The Symplectic Form636
The Condition for Canonicity636
Poisson Brackets636
9.6.3 The kdV Equation637
KdV as a Hamiltonian Field637
Constants of the Motion638
Generating the Constants of the Motion639
More on Constants of the Motion640
9.6.4 The Sine-Gordon Equation642
Two-Component Field Variables642
sG as a Hamiltonian Field643
Problems646
EPILOGUE648
APPENDIX:VECTOR SPACES649
General Vector Spaces649
Linear Operators651
Inverses and Eigenvalues652
Inner Products and Hermitian Operators653
BIBLIOGRAPHY656
INDEX663
热门推荐
- 2319402.html
- 2695529.html
- 214238.html
- 3055960.html
- 2803891.html
- 398584.html
- 1965687.html
- 1507405.html
- 2817776.html
- 17087.html
- http://www.ickdjs.cc/book_3388724.html
- http://www.ickdjs.cc/book_1108397.html
- http://www.ickdjs.cc/book_2798681.html
- http://www.ickdjs.cc/book_3702071.html
- http://www.ickdjs.cc/book_1322462.html
- http://www.ickdjs.cc/book_128529.html
- http://www.ickdjs.cc/book_3026462.html
- http://www.ickdjs.cc/book_740186.html
- http://www.ickdjs.cc/book_3527034.html
- http://www.ickdjs.cc/book_3730464.html