图书介绍
统计学习基础 第2版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (德)黑斯蒂(Hastie,T.)著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510084508
- 出版时间:2015
- 标注页数:745页
- 文件大小:81MB
- 文件页数:768页
- 主题词:统计学-英文
PDF下载
下载说明
统计学习基础 第2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
2 Overview of Supervised Learning9
2.1 Introduction9
2.2 Variable Types and Terminology9
2.3 Two Simple Approaches to Prediction:Least Squares and Nearest Neighbors11
2.3.1 Linear Models and Least Squares11
2.3.2 Nearest-Neighbor Methods14
2.3.3 From Least Squares to Nearest Neighbors16
2.4 Statistical Decision Theory18
2.5 Local Methods in High Dimensions22
2.6 Statistical Models,Supervised Learning and Function Approximation28
2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y)28
2.6.2 Supervised Learning29
2.6.3 Function Approximation29
2.7 Structured Regression Models32
2.7.1 Difficulty of the Problem32
2.8 Classes of Restricted Estimators33
2.8.1 Roughness Penalty and Bayesian Methods34
2.8.2 Kernel Methods and Local Regression34
2.8.3 Basis Functions and Dictionary Methods35
2.9 Model Selection and the Bias-Variance Tradeoff37
Bibliographic Notes39
Exercises39
3 Linear Methods for Regression43
3.1 Introduction43
3.2 Linear Regression Models and Least Squares44
3.2.1 Example:Prostate Cancer49
3.2.2 The Gauss-Markov Theorem51
3.2.3 Multiple Regression from Simple Univariate Regression52
3.2.4 Multiple Outputs56
3.3 Subset Selection57
3.3.1 Best-Subset Selection57
3.3.2 Forward-and Backward-Stepwise Selection58
3.3.3 Forward-Stagewise Regression60
3.3.4 Prostate Cancer Data Example (Continued)61
3.4 Shrinkage Methods61
3.4.1 Ridge Regression61
3.4.2 The Lasso68
3.4.3 Discussion:Subset Selection,Ridge Regression and the Lasso69
3.4.4 Least Angle Regression73
3.5 Methods Using Derived Input Directions79
3.5.1 Principal Components Regression79
3.5.2 Partial Least Squares80
3.6 Discussion:A Comparison of the Selection and Shrinkage Methods82
3.7 Multiple Outcome Shrinkage and Selection84
3.8 More on the Lasso and Related Path Algorithms86
3.8.1 Incremental Forward Stagewise Regression86
3.8.2 Piecewise-Linear Path Algorithms89
3.8.3 The Dantzig Selector89
3.8.4 The Grouped Lasso90
3.8.5 Further Properties of the Lasso91
3.8.6 Pathwise Coordinate Optimization92
3.9 Computational Considerations93
Bibliographic Notes94
Exercises94
4 Linear Methods for Classification101
4.1 Introduction101
4.2 Linear Regression of an Indicator Matrix103
4.3 Linear Discriminant Analysis106
4.3.1 Regularized Discriminant Analysis112
4.3.2 Computations for LDA113
4.3.3 Reduced-Rank Linear Discriminant Analysis113
4.4 Logistic Regression119
4.4.1 Fitting Logistic Regression Models120
4.4.2 Example:South African Heart Disease122
4.4.3 Quadratic Approximations and Inference124
4.4.4 L1 Regularized Logistic Regression125
4.4.5 Logistic Regression or LDA?127
4.5 Separating Hyperplanes129
4.5.1 Rosenblatt's Perceptron Learning Algorithm130
4.5.2 Optimal Separating Hyperplanes132
Bibliographic Notes135
Exercises135
5 Basis Expansions and Regularization139
5.1 Introduction139
5.2 Piecewise Polynomials and Splines141
5.2.1 Natural Cubic Splines144
5.2.2 Example:South African Heart Disease(Continued)146
5.2.3 Example:Phoneme Recognition148
5.3 Filtering and Feature Extraction150
5.4 Smoothing Splines151
5.4.1 Degrees of Freedom and Smoother Matrices153
5.5 Automatic Selection of the Smoothing Parameters156
5.5.1 Fixing the Degrees of Freedom158
5.5.2 The Bias-Variance Tradeoff158
5.6 Nonparametric Logistic Regression161
5.7 Multidimensional Splines162
5.8 Regularization and Reproducing Kernel Hilbert Spaces167
5.8.1 Spaces of Functions Generated by Kernels168
5.8.2 Examples of RKHS170
5.9 Wavelet Smoothing174
5.9.1 Wavelet Bases and the Wavelet Transform176
5.9.2 Adaptive Wavelet Filtering179
Bibliographic Notes181
Exercises181
Appendix:Computational Considerations for Splines186
Appendix:B-splines186
Appendix:Computations for Smoothing Splines189
6 Kernel Smoothing Methods191
6.1 One-Dimensional Kernel Smoothers192
6.1.1 Local Linear Regression194
6.1.2 Local Polynomial Regression197
6.2 Selecting the Width of the Kernel198
6.3 Local Regression in IRp200
6.4 Structured Local Regression Models in IRp201
6.4.1 Structured Kernels203
6.4.2 Structured Regression Functions203
6.5 Local Likelihood and Other Models205
6.6 Kernel Density Estimation and Classification208
6.6.1 Kernel Density Estimation208
6.6.2 Kernel Density Classification210
6.6.3 The Naive Bayes Classifier210
6.7 Radial Basis Functions and Kernels212
6.8 Mixture Models for Density Estimation and Classification214
6.9 Computational Considerations216
Bibliographic Notes216
Exercises216
7 Model Assessment and Selection219
7.1 Introduction219
7.2 Bias,Variance and Model Complexity219
7.3 The Bias-Variance Decomposition223
7.3.1 Example:Bias-Variance Tradeoff226
7.4 Optimism of the Training Error Rate228
7.5 Estimates of In-Sample Prediction Error230
7.6 The Effective Number of Parameters232
7.7 The Bayesian Approach and BIC233
7.8 Minimum Description Length235
7.9 Vapnik-Chervonenkis Dimension237
7.9.1 Example (Continued)239
7.10 Cross-Validation241
7.10.1 K-Fold Cross-Validation241
7.10.2 The Wrong and Right Way to Do Cross-validation245
7.10.3 Does Cross-Validation Really Work?247
7.11 Bootstrap Methods249
7.11.1 Example(Continued)252
7.12 Conditional or Expected Test Error?254
Bibliographic Notes257
Exercises257
8 Model Inference and Averaging261
8.1 Introduction261
8.2 The Bootstrap and Maximum Likelihood Methods261
8.2.1 A Smoothing Example261
8.2.2 Maximum Likelihood Inference265
8.2.3 Bootstrap versus Maximum Likelihood267
8.3 Bayesian Methods267
8.4 Relationship Between the Bootstrap and Bayesian Inference271
8.5 The EM Algorithm272
8.5.1 Two-Component Mixture Model272
8.5.2 The EM Algorithm in General276
8.5.3 EM as a Maximization-Maximization Procedure277
8.6 MCMC for Sampling from the Posterior279
8.7 Bagging282
8.7.1 Example:Trees with Simulated Data283
8.8 Model Averaging and Stacking288
8.9 Stochastic Search:Bumping290
Bibliographic Notes292
Exercises293
9 Additive Models,Trees,and Related Methods295
9.1 Generalized Additive Models295
9.1.1 Fitting Additive Models297
9.1.2 Example:Additive Logistic Regression299
9.1.3 Summary304
9.2 Tree-Based Methods305
9.2.1 Background305
9.2.2 Regression Trees307
9.2.3 Classification Trees308
9.2.4 Other Issues310
9.2.5 Spam Example (Continued)313
9.3 PRIM:Bump Hunting317
9.3.1 Spam Example (Continued)320
9.4 MARS:Multivariate Adaptive Regression Splines321
9.4.1 Spam Example (Continued)326
9.4.2 Example (Simulated Data)327
9.4.3 Other Issues328
9.5 Hierarchical Mixtures of Experts329
9.6 Missing Data332
9.7 Computational Considerations334
Bibliographic Notes334
Exercises335
10 Boosting and Additive Trees337
10.1 Boosting Methods337
10.1.1 Outline of This Chapter340
10.2 Boosting Fits an Additive Model341
10.3 Forward Stagewise Additive Modeling342
10.4 Exponential Loss and AdaBoost343
10.5 Why Exponential Loss?345
10.6 Loss Functions and Robustness346
10.7 "Off-the-Shelf"Procedures for Data Mining350
10.8 Example:Spam Data352
10.9 Boosting Trees353
10.10 Numerical Optimization via Gradient Boosting358
10.10.1 Steepest Descent358
10.10.2 Gradient Boosting359
10.10.3 Implementations of Gradient Boosting360
10.11 Right-Sized Trees for Boosting361
10.12 Regularization364
10.12.1 Shrinkage364
10.12.2 Subsampling365
10.13 Interpretation367
10.13.1 Relative Importance of Predictor Variables367
10.13.2 Partial Dependence Plots369
10.14 Illustrations371
10.14.1 California Housing371
10.14.2 New Zealand Fish375
10.14.3 Demographics Data379
Bibliographic Notes380
Exercises384
11 Neural Networks389
11.1 Introduction389
11.2 Projection Pursuit Regression389
11.3 Neural Networks392
11.4 Fitting Neural Networks395
11.5 Some Issues in Training Neural Networks397
11.5.1 Starting Values397
11.5.2 Overfitting398
11.5.3 Scaling of the Inputs398
11.5.4 Number of Hidden Units and Layers400
11.5.5 Multiple Minima400
11.6 Example:Simulated Data401
11.7 Example:ZIP Code Data404
11.8 Discussion408
11.9 Bayesian Neural Nets and the NIPS 2003 Challenge409
11.9.1 Bayes,Boosting and Bagging410
11.9.2 Performance Comparisons412
11.10 Computational Considerations414
Bibliographic Notes415
Exercises415
12 Support Vector Machines and Flexible Discriminants417
12.1 Introduction417
12.2 The Support Vector Classifier417
12.2.1 Computing the Support Vector Classifier420
12.2.2 Mixture Example (Continued)421
12.3 Support Vector Machines and Kernels423
12.3.1 Computing the SVM for Classification423
12.3.2 The SVM as a Penalization Method426
12.3.3 Function Estimation and Reproducing Kernels428
12.3.4 SVMs and the Curse of Dimensionality431
12.3.5 A Path Algorithm for the SVM Classifier432
12.3.6 Support Vector Machines for Regression434
12.3.7 Regression and Kernels436
12.3.8 Discussion438
12.4 Generalizing Linear Discriminant Analysis438
12.5 Flexible Discriminant Analysis440
12.5.1 Computing the FDA Estimates444
12.6 Penalized Discriminant Analysis446
12.7 Mixture Discriminant Analysis449
12.7.1 Example:Waveform Data451
Bibliographic Notes455
Exercises455
13 Prototype Methods and Nearest-Neighbors459
13.1 Introduction459
13.2 Prototype Methods459
13.2.1 K-means Clustering460
13.2.2 Learning Vector Quantization462
13.2.3 Gaussian Mixtures463
13.3 k-Nearest-Neighbor Classifiers463
13.3.1 Example:A Comparative Study468
13.3.2 Example:k-Nearest-Neighbors and Image Scene Classification470
13.3.3 Invariant Metrics and Tangent Distance471
13.4 Adaptive Nearest-Neighbor Methods475
13.4.1 Example478
13.4.2 Global Dimension Reduction for Nearest-Neighbors479
13.5 Computational Considerations480
Bibliographic Notes481
Exercises481
14 Unsupervised Learning485
14.1 Introduction485
14.2 Association Rules487
14.2.1 Market Basket Analysis488
14.2.2 The Apriori Algorithm489
14.2.3 Example:Market Basket Analysis492
14.2.4 Unsupervised as Supervised Learning495
14.2.5 Generalized Association Rules497
14.2.6 Choice of Supervised Learning Method499
14.2.7 Example:Market Basket Analysis(Continued)499
14.3 Cluster Analysis501
14.3.1 Proximity Matrices503
14.3.2 Dissimilarities Based on Attributes503
14.3.3 Object Dissimilarity505
14.3.4 Clustering Algorithms507
14.3.5 Combinatorial Algorithms507
14.3.6 K-means509
14.3.7 Gaussian Mixtures as Soft K-means Clustering510
14.3.8 Example:Human Tumor Microarray Data512
14.3.9 Vector Quantization514
14.3.10 K-medoids515
14.3.11 Practical Issues518
14.3.12 Hierarchical Clustering520
14.4 Self-Organizing Maps528
14.5 Principal Components,Curves and Surfaces534
14.5.1 Principal Components534
14.5.2 Principal Curves and Surfaces541
14.5.3 Spectral Clustering544
14.5.4 Kernel Principal Components547
14.5.5 Sparse Principal Components550
14.6 Non-negative Matrix Factorization553
14.6.1 Archetypal Analysis554
14.7 Independent Component Analysis and Exploratory Projection Pursuit557
14.7.1 Latent Variables and Factor Analysis558
14.7.2 Independent Component Analysis560
14.7.3 Exploratory Projection Pursuit565
14.7.4 A Direct Approach to ICA565
14.8 Multidimensional Scaling570
14.9 Nonlinear Dimension Reduction and Local Multidimensional Scaling572
14.10 The Google PageRank Algorithm576
Bibliographic Notes578
Exercises579
15 Random Forests587
15.1 Introduction587
15.2 Definition of Random Forests587
15.3 Details of Random Forests592
15.3.1 Out of Bag Samples592
15.3.2 Variable Importance593
15.3.3 Proximity Plots595
15.3.4 Random Forests and Overfitting596
15.4 Analysis of Random Forests597
15.4.1 Variance and the De-Correlation Effect597
15.4.2 Bias600
15.4.3 Adaptive Nearest Neighbors601
Bibliographic Notes602
Exercises603
16 Ensemble Learning605
16.1 Introduction605
16.2 Boosting and Regularization Paths607
16.2.1 Penalized Regression607
16.2.2 The"Bet on Sparsity"Principle610
16.2.3 Regularization Paths,Over-fitting and Margins613
16.3 Learning Ensembles616
16.3.1 Learning a Good Ensemble617
16.3.2 Rule Ensembles622
Bibliographic Notes623
Exercises624
17 Undirected Graphical Models625
17.1 Introduction625
17.2 Markov Graphs and Their Properties627
17.3 Undirected Graphical Models for Continuous Variables630
17.3.1 Estimation of the Parameters when the Graph Structure is Known631
17.3.2 Estimation of the Graph Structure635
17.4 Undirected Graphical Models for Discrete Variables638
17.4.1 Estimation of the Parameters when the Graph Structure is Known639
17.4.2 Hidden Nodes641
17.4.3 Estimation of the Graph Structure642
17.4.4 Restricted Boltzmann Machines643
Exercises645
18 High-Dimensional Problems:p>>N649
18.1 When p is Much Bigger than N649
18.2 Diagonal Linear Discriminant Analysis and Nearest Shrunken Centroids651
18.3 Linear Classifiers with Quadratic Regularization654
18.3.1 Regularized Discriminant Analysis656
18.3.2 Logistic Regression with Quadratic Regularization657
18.3.3 The Support Vector Classifier657
18.3.4 Feature Selection658
18.3.5 Computational Shortcuts When p>>N659
18.4 Linear Classifiers with L1 Regularization661
18.4.1 Application of Lasso to Protein Mass Spectroscopy664
18.4.2 The Fused Lasso for Functional Data666
18.5 Classification When Features are Unavailable668
18.5.1 Example:String Kernels and Protein Classification668
18.5.2 Classification and Other Models Using Inner-Product Kernels and Pairwise Distances670
18.5.3 Example:Abstracts Classification672
18.6 High-Dimensional Regression:Supervised Principal Components674
18.6.1 Connection to Latent-Variable Modeling678
18.6.2 Relationship with Partial Least Squares680
18.6.3 Pre-Conditioning for Feature Selection681
18.7 Feature Assessment and the Multiple-Testing Problem683
18.7.1 The False Discovery Rate687
18.7.2 Asymmetric Cutpoints and the SAM Procedure690
18.7.3 A Bayesian Interpretation of the FDR692
18.8 Bibliographic Notes693
Exercises694
References699
Author Index729
Index737
热门推荐
- 1451612.html
- 3565918.html
- 71403.html
- 2150950.html
- 3443194.html
- 3169091.html
- 1473079.html
- 2856856.html
- 841852.html
- 1949847.html
- http://www.ickdjs.cc/book_3031826.html
- http://www.ickdjs.cc/book_3881594.html
- http://www.ickdjs.cc/book_3016706.html
- http://www.ickdjs.cc/book_2347441.html
- http://www.ickdjs.cc/book_335748.html
- http://www.ickdjs.cc/book_1989245.html
- http://www.ickdjs.cc/book_967394.html
- http://www.ickdjs.cc/book_3463671.html
- http://www.ickdjs.cc/book_777001.html
- http://www.ickdjs.cc/book_3565633.html