图书介绍

微积分 英文版 原书第9版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

微积分 英文版 原书第9版
  • (美)DaleVarberg,EdwinJ.purcell,StevenE.rigdon著 著
  • 出版社: 北京:机械工业出版社
  • ISBN:9787111275985
  • 出版时间:2009
  • 标注页数:774页
  • 文件大小:183MB
  • 文件页数:797页
  • 主题词:微积分-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

微积分 英文版 原书第9版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

0 Preliminaries1

0.1 Real Numbers,Estimation,and Logic1

0.2 Inequalities and Absolute Values 8

0.3 The Rectangular Coordinate System 16

0.4 Graphs of Equations24

0.5 Functions and Their Graphs 29

0.6 Operations on Functions35

0.7 Trigonometric Functions41

0.8 Chapter Review51

Review and Preview Problems 54

1 Limits55

1.1 Introduction to Limits55

1.2 Rigorous Study of Limits 61

1.3 Limit Theorems68

1.4 Limits Involving Trigonometric Functions73

1.5 Limits at Infinity;Infinite Limits77

1.6 Continuity of Functions82

1.7 Chapter Review90

Review and Preview Problems92

2 The Derivative93

2.1 Two Problems with One Theme93

2.2 The Derivative100

2.3 Rules for Finding Derivatives107

2.4 Derivatives of Trigonometric Functions114

2.5 The Chain Rule118

2.6 Higher-Order Derivatives125

2.7 Implicit Differentiation130

2.8 Related Rates135

2.9 Differentials and Approximations142

2.10 Chapter Review147

Review and Preview Problems150

3 Applications of the Derivative151

3.1 Maxima and Minima151

3.2 Monotonicity and Concavity155

3.3 Local Extrema and Extrema on Open Intervals162

3.4 Practical Problems167

3.5 Graphing Functions Using Calculus178

3.6 The Mean Value Theorem for Derivatives185

3.7 Solving Equations Numerically190

3.8 Antiderivatives197

3.9 Introduction to Differential Equations203

3.10 Chapter Review209

Review and Preview Problems214

4 The Definite Integral215

4.1 Introduction to Area215

4.2 The Definite Integral224

4.3 The First Fundamental Theorem of Calculus232

4.4 The Second Fundamental Theorem of Calculus and the Method of Substitution243

4.5 The Mean Value Theorem for Integrals and the Use of Symmetry253

4.6 Numerical Integration260

4.7 Chapter Review270

Review and Preview Problems274

5 Applications of the Integral275

5.1 The Area of a Plane Region275

5.2 Volumes of Solids:Slabs,Disks,Washers281

5.3 Volumes of Solids of Revolution:Shells288

5.4 Length of a Plane Curve294

5.5 Work and Fluid Force301

5.6 Moments and Center of Mass308

5.7 Probability and Random Variables316

5.8 Chapter Review322

Review and Preview Problems324

6 Transcendental Functions325

6.1 The Natural Logarithm Function325

6.2 Inverse Functions and Their Derivatives331

6.3 The Natural Exponential Function337

6.4 General Exponential and Logarithmic Functions342

6.5 Exponential Growth and Decay347

6.6 First-Order Linear Differential Equations355

6.7 Approximations for Differential Equations359

6.8 The Inverse Trigonometric Functions and Their Derivatives365

6.9 The Hyperbolic Functions and Their Inverses374

6.10 Chapter Review380

Review and Preview Problems382

7 Techniques of Integration383

7.1 Basic Integration Rules383

7.2 Integration by Parts387

7.3 Some Trigonometric Integrals393

7.4 Rationalizing Substitutions399

7.5 Integration of Rational Functions Using Partial Fractions404

7.6 Strategies for Integration411

7.7 Chapter Review419

Review and Preview Problems422

8 Indeterminate Forms and Improper Integrals 423

8.1 Indeterminate Forms of Type 0/0 423

8.2 Other Indeterminate Forms 428

8.3 Improper Integrals:Infinite Limits of Integration 433

8.4 Improper Integrals:Infinite Integrands 442

8.5 Chapter Review 446

Review and Preview Problems 448

9 Infinite Series 449

9.1 Infinite Sequences 449

9.2 Infinite Series 455

9.3 Positive Series:The Integral Test 463

9.4 Positive Series:Other Tests 468

9.5 Alternating Series,Absolute Convergence,and Conditional Convergence 474

9.6 Power Series 479

9.7 Operations on Power Series 484

9.8 Taylor and Maclaurin Series 489

9.9 The Taylor Approximation to a Function 497

9.10 Chapter Review 504

Review and Preview Problems 508

10 Conics and Polar Coordinates509

10.1 The Parabola509

10.2 Ellipses and Hyperbolas 513

10.3 Translation and Rotation of Axes 523

10.4 Parametric Representation of Curves in the Plane530

10.5 The Polar Coordinate System 537

10.6 Graphs of Polar Equations542

10.7 Calculus in Polar Coordinates 547

10.8 Chapter Review552

Review and Preview Problems 554

11 Geometry in Space and Vectors555

11.1 Cartesian Coordinates in Three-Space555

11.2 Vectors 560

11.3 The Dot Product566

11.4 The Cross Product574

11.5 Vector-Valued Functions and Curvilinear Motion 579

11.6 Lines and Tangent Lines in Three-Space 589

11.7 Curvature and Components of Acceleration 593

11.8 Surfaces in Three-Space 603

11.9 Cylindrical and Spherical Coordinates609

11.10 Chapter Review 613

Review and Preview Problems616

12 Derivatives for Functions of Two or More Variables617

12.1 Functions of Two or More Variables 617

12.2 Partial Derivatives624

12.3 Limits and Continuity 629

12.4 Differentiability 635

12.5 Directional Derivatives and Gradients 641

12.6 The Chain Rule647

12.7 Tangent Planes and Approximations 652

12.8 Maxima and Minima 657

12.9 The Method of Lagrange Multipliers 666

12.10 Chapter Review 672

Review and Preview Problems 674

13 Multiple Integrals 675

13.1 Double Integrals over Rectangles675

13.2 Iterated Integrals 680

13.3 Double Integrals over Nonrectangular Regions 684

13.4 Double Integrals in Polar Coordinates 691

13.5 Applications of Double Integrals 696

13.6 Surface Area 700

13.7 Triple Integrals in Cartesian Coordinates706

13.8 Triple Integrals in Cylindrical and Spherical Coordinates713

13.9 Change of Variables in Multiple Integrals 718

13.10 Chapter Review 728

Review and Preview Problems 730

14 Vector Calculus 731

14.1 Vector Fields731

14.2 Line Integrals 735

14.3 Independence of Path 742

14.4 Green's Theorem in the Plane 749

14.5 Surface Integrals755

14.6 Gauss's Divergence Theorem 764

14.7 Stokes's Theorem 770

14.8 Chapter Review773

Appendix A-1

A.1 Mathematical Induction A-1

A.2 Proofs of Several Theorems A-3

热门推荐