图书介绍
局部p-凸空间引论2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 王见勇著 著
- 出版社: 北京:科学出版社
- ISBN:9787030369758
- 出版时间:2013
- 标注页数:225页
- 文件大小:65MB
- 文件页数:236页
- 主题词:局部凸线性空间-研究
PDF下载
下载说明
局部p-凸空间引论PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 拓扑线性空间与赋准范空间1
1.1拓扑线性空间1
1.2度量线性空间与赋准范空间6
1.3赋准范空间的例子11
1.4开映射定理与闭图像定理18
1.5评注与参考资料25
第2章p-凸集与p-凸泛函26
2.1线性空间中集合的p-凸性26
2.2拓扑线性空间中的p-凸集33
2.3 p-凸泛函37
2.4评注与参考资料47
第3章 局部P-凸空间48
3.1局部p-凸空间48
3.2局部p-凸空间的运算性质51
3.3局部p-凸空间中的分离定理与Krein-Milman定理54
3.4局部p-凸空间中的Hahn-Banach定理60
3.5评注与参考资料64
第4章 局部有界空间65
4.1有界集合65
4.2局部有界空间67
4.2.1集合凹性模68
4.2.2空间凹性模72
4.2.3局部有界空间的可赋p-范性73
4.3局部有界万有空间79
4.3.1赋p-范空间lp的充分大性80
4.3.2 可分赋p-范空间类Sp的万有空间82
4.4局部拟凸空间93
4.4.1局部拟凸空间93
4.4.2可分局部拟P-凸空间族的万有空间100
4.5 Orlicz空间的局部有界性101
4.6评注与参考资料107
第5章 拓扑锥与局部P-凸空间的共轭锥109
5.1凸锥109
5.2拟平移不变拓扑锥与局部生成拓扑锥112
5.3赋范拓扑锥117
5.4共轭锥(X·p,UA)与(X·p,||·||)119
5.5共轭锥X*p,中的一致有界定理124
5.6评注与参考资料130
第6章Lebesgue空间lp与Lp(μ)(0<p≤1)131
6.1 lp与Lp(μ)的局部凸性131
6.1.1 Lp(μ)与lp的局部凸性131
6.1.2 lp的共轭空间的表示定理(0≤p<1)138
6.1.3真闭弱稠子空间的存在性139
6.2 lp与Lp(μ)的局部q-凸性140
6.3实空间lp与Lp(μ)的共轭锥的次表示定理146
6.3.1实数列空间lp的共轭锥的次表示定理147
6.3.2空间lp的q-共轭锥(lp)*q的次表示定理150
6.3.3实函数空间Lp(μ,X)的共轭锥的次表示定理151
6.4 lp(X)与Lp(μ,X)的共轭锥的次表示定理157
6.4.1向量值序列空间lp (X)的共轭锥的次表示定理158
6.4.2向量值函数空间Lp (μ,X)的共轭锥的次表示定理163
6.5评注与参考资料175
第7章Hardy空间177
7.1 Hp的基本构造与性质178
7.1.1边界值函数180
7.1.2 Blaschke分解182
7.1.3平均收敛到边界值函数186
7.1.4 Hp到Lp(T)的嵌入189
7.2 Hp(0<p<1)的非局部凸性194
7.3 Hp(1≤p<∞)的共轭空间的表示定理196
7.3.1零化子196
7.3.2 Hp(1≤p<∞)的共轭空间的表示定理198
7.4 Hp (0<P≤1)的共轭锥的次表示定理200
7.5评注与参考资料205
附录 积分凸性及其应用207
A.1积分凸性的定义207
A.2集合的∫-凸性208
A.3泛函的∫-凸性212
A.4 ∫-端点定理及其应用216
参考文献219
索引222
热门推荐
- 523654.html
- 3559262.html
- 1736639.html
- 3008894.html
- 3253731.html
- 3431084.html
- 2959483.html
- 1814773.html
- 59834.html
- 2528434.html
- http://www.ickdjs.cc/book_1628270.html
- http://www.ickdjs.cc/book_3654069.html
- http://www.ickdjs.cc/book_778819.html
- http://www.ickdjs.cc/book_279074.html
- http://www.ickdjs.cc/book_582814.html
- http://www.ickdjs.cc/book_1324169.html
- http://www.ickdjs.cc/book_1209756.html
- http://www.ickdjs.cc/book_3190775.html
- http://www.ickdjs.cc/book_3063898.html
- http://www.ickdjs.cc/book_688430.html