图书介绍

高等数学 下2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

高等数学 下
  • 余胜春,张平芳主编 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030354136
  • 出版时间:2012
  • 标注页数:185页
  • 文件大小:26MB
  • 文件页数:195页
  • 主题词:高等数学-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

高等数学 下PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第七章 向量代数与空间解析几何1

第一节 空间直角坐标系、向量及其线性运算1

一、空间直角坐标系1

二、向量的概念4

三、向量的线性运算4

习题7-110

第二节 数量积与向量积11

一、两向量的数量积(内积或点积)11

二、两向量的向量积13

习题7-216

第三节 平面与空间直线方程17

一、平面17

二、空间直线22

习题7-327

第四节 常见曲面与空间曲线方程28

一、曲面方程的概念28

二、常见曲面30

三、空间曲线35

四、空间曲线在坐标面上的投影37

习题7-438

总习题七39

数学家简介七——笛卡儿40

第八章 多元函数微分学42

第一节 多元函数的基本概念42

一、区域42

二、多元函数的定义43

三、多元函数的几何意义45

四、二元函数的极限46

五、二元函数的连续性47

习题8-149

第二节 偏导数49

一、偏导数的概念及几何意义49

二、高阶偏导数52

习题8-254

第三节 多元复合函数与隐函数的偏导数55

一、复合函数的偏导数55

二、隐函数的偏导数57

习题8-359

第四节 全微分及其应用59

一、全微分的定义59

二、全微分在近似计算中的应用63

习题8-464

第五节 多元微分学的几何应用65

一、空间曲线的切线与法平面65

二、曲面的切平面与法线67

习题8-569

第六节 二元函数的极值及其求法70

一、二元函数的极值70

二、二元函数的最值73

三、条件极值、拉格朗日乘数法74

习题8-676

总习题八76

数学家简介八——泰勒78

第九章 二重积分79

第一节 二重积分的概念与性质79

一、二重积分的概念79

二、重积分的几何意义82

三、二重积分的性质82

习题9-184

第二节 二重积分的计算法85

一、利用直角坐标计算二重积分85

二、二重积分在极坐标下的计算90

习题9-295

第三节 二重积分的应用96

一、几何应用96

二、物理应用100

习题9-3104

总习题九105

数学家简介九——黎曼105

第十章 无穷级数107

第一节 常数项级数的概念与性质107

一、常数项级数的概念107

二、收敛级数的基本性质110

习题10-1111

第二节 常数项级数的审敛法112

一、正项级数及其审敛法112

二、交错级数及其审敛法116

三、绝对收敛与条件收敛117

习题10-2119

第三节 幂级数120

一、函数项级数的概念120

二、幂级数及其收敛性121

三、幂级数的运算126

习题10-3127

第四节 函数展开成幂级数128

一、泰勒公式与麦克劳林公式128

二、泰勒级数与麦克劳林级数129

三、函数展开成幂级数131

习题10-4135

总习题十135

数学家简介十——阿贝尔137

第十一章 微分方程和差分方程139

第一节 微分方程的基本概念139

习题11-1142

第二节 一阶微分方程143

一、可分离变量的微分方程143

二、齐次方程144

三、一阶线性微分方程149

四、伯努利方程151

习题11-2153

第三节 可降阶的高阶微分方程153

一、y(n)=f(x)型的高阶微分方程154

二、y″=f(x,y′)型的高阶微分方程154

三、y″=f(y,y′)型的高阶微分方程155

习题11-3156

第四节 二阶常系数线性微分方程157

一、二阶常系数线性微分方程的解的结构157

二、二阶常系数齐次线性微分方程158

三、二阶常系数非齐次线性微分方程162

习题11-4165

第五节 差分方程166

一、差分166

二、差分方程的基本概念167

三、一阶常系数线性差分方程的解168

习题11-5170

总习题十一170

数学家简介十一——伯努利171

参考答案与提示173

热门推荐