图书介绍

Introduction To Topology2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

Introduction To Topology
  • Solomon Lefschetz 著
  • 出版社: Princeton University Press
  • ISBN:
  • 出版时间:1949
  • 标注页数:218页
  • 文件大小:53MB
  • 文件页数:226页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Introduction To TopologyPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Introduction,a Survey of Some Topological Concepts3

1.Theory of Sets.Topological Spaces3

2.Questions Related to Curves5

3.Polyhedra8

4.Coincidences and Fixed Points14

5.Vector Fields17

6.Integration and Topology19

Chapter Ⅰ.Basic Information about Sets,Spaces,Vectors,Groups26

1.Questions of Notation and Terminology26

2.Euclidean Spaces,Metric Spaces,Topological Spaces28

3.Compact Spaces34

4.Vector Spaces38

5.Products of Sets,Spaces and Groups.Homotopy40

Problems43

Chapter Ⅱ.Two-dimensional Polyhedral Topology45

1.Elements of the Theory of Complexes.Geometric Consideration45

2.Elements of the Theory of Complexes.Modulo Two Theory50

3.The Jordan Curve Theorem61

4.Proof of the Jordan Curve Theorem65

5.Some Additional Properties of Complexes68

6.Closed Surfaces.Generalities72

7.Closed Surfaces.Reduction to a Normal Form83

Problems84

Chapter Ⅲ.Theory of Complexes86

1.Intuitive Approach86

2.Simplexes and Simplicial Complexes87

3.Chains,Cycles,Homology Groups89

4.Geometric Complexes95

5.Calculation of the Betti Numbers.The Euler-Poincaré Characteristic99

6.Relation between Connectedness and Homology103

7.Circuits105

Problems107

Chapter Ⅳ.Transformations of Complexes.Simplicial Approximations and Related Questions110

1.Set-transformations.Chain-mappings110

2.Derivation112

3.The Brouwer Fixed Point Theorem117

4.Simplicial Approximation119

5.The Brouwer Degree124

6.Hopf's Classification of Mappings of n-spheres on n-spheres132

7.Some Theorems on the Sphere134

Problems140

Chapter Ⅴ.Further Properties of Homotopy.Fixed Points.Fundamental Group.Homotopy Groups142

1.Homotopy of Chain-mappings142

2.Homology in Polyhedra.Relation to Homotopy148

3.The Lefschetz Fixed Point Theorem for Polyhedra153

4.The Fundamental Group157

5.The Homotopy Groups170

Problems180

Chapter Ⅵ.Introduction to Manifolds.Duality Theorems183

1.Differentiable and Other Manifolds183

2.The Poincare Duality Theorem188

3.Relative Homology Theory195

4.Relative Manifolds and Related Duality Theory(Elementary Theory).Alexander's Duality Theorem202

Problems206

Bibliography208

List of Symbols211

Index213

热门推荐