图书介绍

TensorFlow深度学习算法原理与编程实战2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

TensorFlow深度学习算法原理与编程实战
  • 蒋子阳著 著
  • 出版社: 北京:中国水利水电出版社
  • ISBN:9787517068228
  • 出版时间:2019
  • 标注页数:552页
  • 文件大小:182MB
  • 文件页数:568页
  • 主题词:人工智能-算法;人工智能-程序设计

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

TensorFlow深度学习算法原理与编程实战PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一部分 探索深度学习之方式的开始2

第1章 开篇2

1.1人工智能的发展2

1.1.1萌芽2

1.1.2复苏4

1.1.3现代实践:大数据+深度神经网络模型6

1.2大数据7

1.3机器学习与深度学习8

1.3.1机器学习9

1.3.2深度学习13

1.3.3同人工智能的关系15

1.4人工神经网络与TensorFlow16

1.4.1人工神经网络16

1.4.2 TensorFlow26

1.5其他主流深度学习框架介绍27

1.5.1 Caffe28

1.5.2 Torch30

1.5.3 Theano31

1.5.4 MXNet32

1.5.5 Keras34

1.6机器学习的常见任务35

1.6.1分类35

1.6.2回归36

1.6.3去噪37

1.6.4转录37

1.6.5机器翻译37

1.6.6异常检测38

1.6.7结构化输出38

1.7深度学习的现代应用39

1.7.1计算机视觉39

1.7.2自然语言处理44

1.7.3语音识别45

第2章 安装TensorFlow47

2.1安装前的须知47

2.1.1检查硬件是否达标47

2.1.2推荐选用GPU进行训练50

2.1.3为什么选择Linux系统57

2.1.4为什么选择Python语言58

2.2安装Anaconda59

2.3 TensorFlow的两个主要依赖包61

2.3.1 Protocol Buffer62

2.3.2 Bazel64

2.4安装CUDA和cuDNN67

2.4.1 CUDA68

2.4.2 cuDNN71

2.5正式安装TensorFlow74

2.5.1使用pip安装74

2.5.2从源代码编译并安装77

2.6测试你的TensorFlow82

2.6.1运行向量相加的例子82

2.6.2加载过程存在的一些问题84

2.7推荐使用IDE84

第3章 TensorFlow编程策略86

3.1初识计算图与张量86

3.2计算图——TensorFlow的计算模型87

3.3张量——TensorFlow的数据模型90

3.3.1概念91

3.3.2使用张量92

3.4会话——TensorFlow的运行模型93

3.4.1 TensorFlow系统结构概述93

3.4.2简单使用会话95

3.4.3使用with/as环境上下文管理器96

3.4.4 Session的参数配置99

3.4.5 placeholder机制99

3.5 TensorFlow变量102

3.5.1创建变量102

3.5.2变量与张量106

3.6管理变量的变量空间108

3.6.1 get_variable()函数108

3.6.2 variable_scope()与name_scope()109

第二部分 TensorFlow实现深度网络116

第4章 深度前馈神经网络116

4.1网络的前馈方式116

4.2全连接118

4.2.1神经元与全连接结构118

4.2.2前向传播算法120

4.3线性模型的局限性124

4.4激活函数131

4.4.1常用激活函数131

4.4.2激活函数实现去线性化135

4.5多层网络解决异或运算137

4.6损失函数140

4.6.1经典损失函数140

4.6.2自定义损失函数154

第5章 优化网络的方法157

5.1基于梯度的优化157

5.1.1梯度下降算法158

5.1.2随机梯度下降164

5.2反向传播165

5.2.1简要解释反向传播算法165

5.2.2自适应学习率算法168

5.2.3 TensorFlow提供的优化器171

5.3学习率的独立设置176

5.3.1指数衰减的学习率177

5.3.2其他优化学习率的方法179

5.4拟合183

5.4.1过拟合和欠拟合183

5.4.2正则化的方法186

5.4.3 Bagging方法192

5.4.4 Dropout方法193

第6章 全连神经网络的经典实践197

6.1 MNIST数据集197

6.2网络的设计201

6.3超参数和验证集209

6.4与简单模型的对比210

第7章 卷积神经网络213

7.1准备性的认识213

7.1.1图像识别与经典数据集214

7.1.2卷积网络的神经科学基础217

7.1.3卷积神经网络的历史220

7.2卷积222

7.2.1卷积运算222

7.2.2卷积运算的稀疏连接224

7.2.3卷积运算的参数共享226

7.2.4卷积运算的平移等变228

7.2.5多卷积核229

7.2.6卷积层的代码实现231

7.3池化236

7.3.1池化过程237

7.3.2常用池化函数238

7.3.3池化层的代码实现239

7.4实现卷积神经网络的简例240

7.4.1卷积神经网络的一般框架240

7.4.2用简单卷积神经网络实现Cifar-10数据集分类243

7.5图像数据处理258

7.5.1图像编解码处理259

7.5.2翻转图像261

7.5.3图像色彩调整262

7.5.4图像标准化处理266

7.5.5调整图像大小267

7.5.6图像的标注框273

第8章 经典卷积神经网络277

8.1 LeNet-5卷积网络模型277

8.1.1模型结构278

8.1.2 TensorFlow实现280

8.2 AlexNet卷积网络模型286

8.2.1模型结构287

8.2.2 TensorFlow实现290

8.3 VGGNet卷积网络模型301

8.3.1模型结构301

8.3.2 TensorFlow实现306

8.4 InceptionNet-V 3卷积网络模型316

8.4.1模型结构322

8.4.2 Inception V3 Module的实现325

8.4.3使用Inception V3完成模型迁移328

8.5 ResNet卷积网络模型341

8.5.1模型结构342

8.5.2 TensorFlow实现346

第9章 循环神经网络356

9.1循环神经网络简介357

9.1.1循环神经网络的前向传播程序设计360

9.1.2计算循环神经网络的梯度364

9.1.3循环神经网络的不同设计模式366

9.2自然语言建模与词向量367

9.2.1统计学语言模型367

9.2.2 Word2Vec371

9.2.3用TensorFlow实现Word2Vec376

9.3 LSTM实现自然语言建模394

9.3.1长短时记忆网络(LSTM)395

9.3.2 LSTM在自然语言建模中的应用399

9.3.3循环神经网络的Dropout414

9.4循环神经网络的变种416

9.4.1双向循环神经网络416

9.4.2深层循环神经网络418

第10章 深度强化学习420

10.1理解基本概念420

10.2深度强化学习的思路421

10.3典型应用场景举例423

10.3.1场景1:机械臂自控423

10.3.2场景2:自动游戏系统424

10.3.3场景3:自动驾驶425

10.3.4场景4:智能围棋系统426

10.4 Q学习与深度Q网络429

10.4.1 Q学习与深度Q学习429

10.4.2深度Q网络431

第三部分 TensorFlow的使用进阶436

第11章 数据读取436

11.1文件格式436

11.1.1 TFRecord格式437

11.1.2 CSV格式440

11.2队列443

11.2.1数据队列443

11.2.2文件队列445

11.3使用多线程处理输入的数据449

11.3.1使用Coordinator类管理线程449

11.3.2使用QueueRunner创建线程452

11.4组织数据batch454

第12章 模型持久化462

12.1通过代码实现462

12.2模型持久化的原理469

12.2.1model.ckpt.mate文件470

12.2.2从.index与.data文件读取变量的值481

12.3持久化的MNIST手写字识别482

12.4 PB文件489

第13章 TensorBoard可视化493

13.1 TensorBoard简要介绍493

13.2 MNIST手写字识别的可视化498

13.2.1实现的过程498

13.2.2标量数据可视化结果505

13.2.3图像数据可视化结果512

13.2.4计算图可视化结果513

13.3其他监控指标可视化521

第14章 加速计算526

14.1 TensorFlow支持的设备526

14.2 TensorFlow单机实现528

14.2.1查看执行运算的设备529

14.2.2 device()函数的使用531

14.3并行训练的原理535

14.3.1数据并行536

14.3.2模型并行539

14.4单机多GPU加速TensorFlow程序540

14.4.1实现的过程540

14.4.2多GPU并行的可视化547

14.5分布式TensorFlow概述548

热门推荐