图书介绍

优化策略及其热能工程应用2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

优化策略及其热能工程应用
  • 李振哲等著 著
  • 出版社: 上海:复旦大学出版社
  • ISBN:9787309121841
  • 出版时间:2016
  • 标注页数:125页
  • 文件大小:14MB
  • 文件页数:142页
  • 主题词:热能-动力工程-研究-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

优化策略及其热能工程应用PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Introduction to research team1

Preface1

Nomenclature1

Greek symbols1

Subscripts1

1.Introduction1

1.1 Research background1

1.2 Design process2

1.3 Optimization algorithm3

1.4 Classification of optimization problem5

2.Modeling strategies for optimization7

2.1 Modeling strategy based on finite concept7

2.1.1 Introduction to research field7

2.1.2 Analysis model8

2.1.3 Development of analysis code suitable for preheating process9

2.1.3.1 Radiative heat transfer9

2.1.3.2 Convective heat transfer14

2.1.3.3 Conductive heat transfer15

2.1.4 Steady optimization for heater power distribution17

2.1.5 Summary22

2.2 Modeling strategy based on design of experiments22

2.2.1 Introduction to research field22

2.2.2 Numerical model and analysis conditions23

2.2.3 Comparison of cases having porous material or not25

2.2.4 Optimization strategy27

2.2.4.1 Concept of D-optimal design27

2.2.4.2 Optimization using DOE method27

2.2.5 Summary30

2.3 Modeling strategy based on analysis database30

2.3.1 Introduction to research field30

2.3.2 System setup and experimental method31

2.3.3 Design of baseline vacuum furnace33

2.3.3.1 Definition of shape33

2.3.3.2 Comparison of cases nearly vacuum or argon gas33

2.3.4 Construction of thermal analysis database35

2.3.4.1 Thermal analysis of vacuum furnace35

2.3.4.2 Calculation of thermal conductivity36

2.3.4.3 Thermal analysis database37

2.3.5 Optimal design strategy38

2.3.5.1 Classification of problem38

2.3.5.2 Process using thermal analysis database38

2.3.6 Optimized results39

2.3.6.1 Accuracy verification39

2.3.6.2 Discussion of results40

2.3.6.3 Feasible optimal design42

2.3.7 Rebuilding of design method43

2.3.8 Summary44

2.4 Modeling strategy based on response surface method44

2.4.1 Introduction to research field45

2.4.2 Dynamic model for fuel cell46

2.4.2.1 Cathode mass flow model47

2.4.2.2 Anode mass flow model49

2.4.2.3 Membrane hydration model50

2.4.2.4 Stack voltage model50

2.4.2.5 Cathode GDL model53

2.4.2.6 Anode GDL model55

2.4.3 Model calibration55

2.4.4 Optimization design using RSM58

2.4.4.1 Concept of response surface method59

2.4.4.2 Construction of response surface61

2.4.4.3 Optimal design with response surface64

2.4.5 Summary65

2.5 Modeling strategy based on analytic method65

2.5.1 Optimization using analytic method65

2.5.1.1 1-d analytic solution65

2.5.1.2 Optimal strategy and results67

2.5.2 Optimization using finite difference method72

2.5.2.1 Classification of problem72

2.5.2.2 Optimal results and discussion72

2.5.3 Summary76

3.Global optimization strategy77

3.1 Global optimization strategy based on genetic algorithm77

3.1.1 Construction of fitting function77

3.1.2 Discussion of optimization results80

3.1.3 Summary81

3.2 Global optimization strategy based on DOE and GBM81

3.2.1 Model descriptions82

3.2.2 Time for obtaining steady state83

3.2.3 Setup of fitting function84

3.2.4 Global optimization87

3.2.5 Summary90

4.Multi-objective optimal strategy90

4.1 Multi-objective strategy based on Benson method90

4.1.1 Parameter study90

4.1.2 Optimal strategy based on Benson method92

4.1.3 Summary93

4.2 Multi-objective strategy based on layered sequence method93

4.2.1 Construction of fitting function94

4.2.2 Multi-objective global optimization96

4.3 Multi-objective strategy based on linear weighted method99

4.3.1 Construction of response surface99

4.3.2 Optimal design and discussion103

4.3.3 Summary104

4.4 Multi-objective strategy based on ideal point method105

4.4.1 Optimal heater power distribution105

4.4.2 Optimal design using ideal point method107

4.4.2.1 Effect of a damaged heater107

4.4.2.2 Optimal results and discussion108

4.4.3 Summary109

5.Conclusions110

6.Acknowledgements111

References112

Index116

热门推荐