图书介绍

加性数论 逆问题与和集几何2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

加性数论 逆问题与和集几何
  • (美)纳森著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510044083
  • 出版时间:2012
  • 标注页数:295页
  • 文件大小:6MB
  • 文件页数:310页
  • 主题词:数论-研究-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

加性数论 逆问题与和集几何PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Simple inverse theorems1

1.1 Direct and inverse problems1

1.2 Finite arithmetic progressions7

1.3 An inverse problem for distinct summands13

1.4 A special case18

1.5 Small sumsets:The case |2A| ?3k-421

1.6 Application:The number of sums and products29

1.7 Application:Sumsets and powers of231

1.8 Notes33

1.9 Exercises35

2 Sums of congruence classes41

2.1 Addition in groups41

2.2 The e-transform42

2.3 The Cauchy-Davenport theorem43

2.4 The Erd?s-Ginzburg-Ziv theorem48

2.5 Vosper's theorem52

2.6 Application:The range ofa diagonal form57

2.7 Exponential sums62

2.8 The Freiman-Vosper theorem67

2.9 Notes73

2.10 Exercises74

3 Sums of distinct congruence classes77

3.1 The Erd?s-Heilbronn conjecture77

3.2 Vaodermonde determinants78

3.3 Multidimensional ballot numbers81

3.4 A review oflinear algebra89

3.5 Alternating products92

3.6 Erd?s-Heilbronn,concluded95

3.7 The polynomial method98

3.8 Erd?s-Heilbronn via polynomials101

3.9 Notes106

3.10 Exercises107

4 Kneser's theorem for groups109

4.1 Periodic subsets109

4.2 The addition theorem110

4.3 Application:The sum oftwo sets ofintegers117

4.4 Application:Basesforfiniteandσ-finite groups127

4.5 Notes130

4.6 Exercises131

5 Sums of vectors in Euclidean space133

5.1 Sinail sumsets and hyperplanes133

5.2 Linearly independent hyperplanes135

5.3 Blocks142

5.4 Proofofthe theorem152

5.5 Notes163

5.6 Exercises163

6 Geometry of numbers167

6.1 Lattices and determinants167

6.2 Convex bodies and Minkowski's FirstTheorem174

6.3 Application:Sums offour squares177

6.4 Successive minima and Minkowski's second theorem180

6.5 Bases for sublattices185

6.6 Torsion-free abelian groups190

6.7 An important example194

6.8 Notes196

6.9 Exercises196

7 Pliinnecke's inequality201

7.1 Pliinnecke graphs201

7.2 Examples ofPlüinnecke graphs203

7.3 Multiplicativityofmagnification ratios205

7.4 Menger's theorem209

7.5 Pliinnecke's inequality212

7.6 Application:Estimates for sumsets in groups217

7.7 Application:Essential components221

7.8 Notes226

7.9 Exercises227

8 Freiman's theorem231

8.1 Multidimensional arithmetic progressions231

8.2 Freiman isomorphisms233

8.3 Bogolyubov's method238

8.4 Ruzsa's proof,concluded244

8.5 Notes251

8.6 Exercises252

9 Applications of Freiman's theorem255

9.1 Combinatorial number theory255

9.2 Small sumsets and long progressions255

9.3 The regularity iemma257

9.4 Tbe Balog-Szemer?di theorem270

9.5 A conjecture ofErd?s277

9.6 The proper conjecture278

9.7 Notes279

9.8 Exercises280

References283

Index292

热门推荐