图书介绍
数据挖掘 实用机器学习工具与技术 英文版 原书第3版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (新西兰)威滕,(新西兰)弗兰克著 著
- 出版社: 北京:机械工业出版社
- ISBN:9787111374176
- 出版时间:2012
- 标注页数:629页
- 文件大小:158MB
- 文件页数:655页
- 主题词:数据采集-英文
PDF下载
下载说明
数据挖掘 实用机器学习工具与技术 英文版 原书第3版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART Ⅰ INTRODUCTION TO DATA MINING3
CHAPTER 1 What's It All About?3
1.1 Data Mining and Machine Learning3
Describing Structural Patterns5
Machine Learning7
Data Mining8
1.2 Simple Examples:The Weather Problem and Others9
The Weather Problem9
Contact Lenses:An Idealized Problem12
Irises:A Classic Numeric Dataset13
CPU Performance:Introducing Numeric Prediction15
Labor Negotiations:A More Realistic Example15
Soybean Classification:A Classic Machine Learning Success19
1.3 Fielded Applications21
Web Mining21
Decisions Involving Judgment22
Screening Images23
Load Forecasting24
Diagnosis25
Marketing and Sales26
Other Applications27
1.4 Machine Learning and Statistics28
1.5 Generalization as Search29
1.6 Data Mining and Ethics33
Reidentification33
Using Personal Information34
Wider Issues35
1.7 Further Reading36
CHAPTER 2 Input:Concepts,Instances,and Attributes39
2.1 What's a Concept?40
2.2 What's in an Example?42
Relations43
Other Example Types46
2.3 What's in an Attribute?49
2.4 Preparing the Input51
Gathering the Data Together51
ARFF Format52
Sparse Data56
Attribute Types56
Missing Values58
Inaccurate Values59
Getting to Know Your Data60
2.5 Further Reading60
CHAPTER 3 Output:Knowledge Representation61
3.1 Tables61
3.2 Linear Models62
3.3 Trees64
3.4 Rules67
Classification Rules69
Association Rules72
Rules with Exceptions73
More Expressive Rules75
3.5 Instance-Based Representation78
3.6 Clusters81
3.7 Further Reading83
CHAPTER 4 Algorithms:The Basic Methods85
4.1 Inferring Rudimentary Rules86
Missing Values and Numeric Attributes87
Discussion89
4.2 Statistical Modeling90
Missing Values and Numeric Attributes94
Na?ve Bayes for Document Classification97
Discussion99
4.3 Divide-and-Conquer:Constructing Decision Trees99
Calculating Information103
Highly Branching Attributes105
Discussion107
4.4 Covering Algorithms:Constructing Rules108
Rules versus Trees109
A Simple Covering Algorithm110
Rules versus Decision Lists115
4.5 Mining Association Rules116
Item Sets116
Association Rules119
Generating Rules Efficiently122
Discussion123
4.6 Linear Models124
Numeric Prediction:Linear Regression124
Linear Classification:Logistic Regression125
Linear Classification Using the Perceptron127
Linear Classification Using Winnow129
4.7 Instance-Based Learning131
Distance Function131
Finding Nearest Neighbors Efficiently132
Discussion137
4.8 Clustering138
Iterative Distance-Based Clustering139
Faster Distance Calculations139
Discussion141
4.9 Multi-Instance Learning141
Aggregating the Input142
Aggregating the Output142
Discussion142
4.10 Further Reading143
4.11 Weka Implementations145
CHAPTER 5 Credibility:Evaluating What's Been Learned147
5.1 Training and Testing148
5.2 Predicting Performance150
5.3 Cross-Validation152
5.4 Other Estimates154
Leave-One-Out Cross-Validation154
The Bootstrap155
5.5 Comparing Data Mining Schemes156
5.6 Predicting Probabilities159
Quadratic Loss Function160
Informational Loss Function161
Discussion162
5.7 Counting the Cost163
Cost-Sensitive Classification166
Cost-Sensitive Learning167
Lift Charts168
ROC Curves172
Recall-precision Curves174
Discussion175
Cost Curves177
5.8 Evaluating Numeric Prediction180
5.9 Minimum Description Length Principle183
5.10 Applying the MDL Principle to Clustering186
5.11 Further Reading187
PART Ⅱ ADVANCED DATA MINING191
CHAPTER 6 Implementations:Real Machine Learning Schemes191
6.1 Decision Trees192
Numeric Attributes193
Missing Values194
Pruning195
Estimating Error Rates197
Complexity of Decision Tree Induction199
From Trees to Rules200
C4.5:Choices and Options201
Cost-Complexity Pruning202
Discussion202
6.2 Classification Rules203
Criteria for Choosing Tests203
Missing Values,Numeric Attributes204
Generating Good Rules205
Using Global Optimization208
Obtaining Rules from Partial Decision Trees208
Rules with Exceptions212
Discussion215
6.3 Association Rules216
Building a Frequent-Pattern Tree216
Finding Large Item Sets219
Discussion222
6.4 Extending Linear Models223
Maximum-Margin Hyperplane224
Nonlinear Class Boundaries226
Support Vector Regression227
Kernel Ridge Regression229
Kernel Perceptron231
Multilayer Perceptrons232
Radial Basis Function Networks241
Stochastic Gradient Descent242
Discussion243
6.5 Instance-Based Learning244
Reducing the Number of Exemplars245
Pruning Noisy Exemplars245
Weighting Attributes246
Generalizing Exemplars247
Distance Functions for Generalized Exemplars248
Generalized Distance Functions249
Discussion250
6.6 Numeric Prediction with Local Linear Models251
Model Trees252
Building the Tree253
Pruning the Tree253
Nominal Attributes254
Missing Values254
Pseudocode for Model Tree Induction255
Rules from Model Trees259
Locally Weighted Linear Regression259
Discussion261
6.7 Bayesian Networks261
Making Predictions262
Learning Bayesian Networks266
Specific Algorithms268
Data Structures for Fast Learning270
Discussion273
6.8 Clustering273
Choosing the Number of Clusters274
Hierarchical Clustering274
Example of Hierarchical Clustering276
Incremental Clustering279
Category Utility284
Probability-Based Clustering285
The EM Algorithm287
Extending the Mixture Model289
Bayesian Clustering290
Discussion292
6.9 Semisupervised Learning294
Clustering for Classification294
Co-training296
EM and Co-training297
Discussion297
6.10 Multi-Instance Learning298
Converting to Single-Instance Learning298
Upgrading Learning Algorithms300
Dedicated Multi-Instance Methods301
Discussion302
6.11 Weka Implementations303
CHAPTER 7 Data Transformations305
7.1 Attribute Selection307
Scheme-Independent Selection308
Searching the Attribute Space311
Scheme-Specific Selection312
7.2 Discretizing Numeric Attributes314
Unsupervised Discretization316
Entropy-Based Discretization316
Other Discretization Methods320
Entropy-Based versus Error-Based Discretization320
Converting Discrete Attributes to Numeric Attributes322
7.3 Projections322
Principal Components Analysis324
Random Projections326
Partial Least-Squares Regression326
Text to Attribute Vectors328
Time Series330
7.4 Sampling330
Reservoir Sampling330
7.5 Cleansing331
Improving Decision Trees332
Robust Regression333
Detecting Anomalies334
One-Class Learning335
7.6 Transforming Multiple Classes to Binary Ones338
Simple Methods338
Error-Correcting Output Codes339
Ensembles of Nested Dichotomies341
7.7 Calibrating Class Probabilities343
7.8 Further Reading346
7.9 Weka Implementations348
CHAPTER 8 Ensemble Learning351
8.1 Combining Multiple Models351
8.2 Bagging352
Bias-Variance Decomposition353
Bagging with Costs355
8.3 Randomization356
Randomization versus Bagging357
Rotation Forests357
8.4 Boosting358
AdaBoost358
The Power of Boosting361
8.5 Additive Regression362
Numeric Prediction362
Additive Logistic Regression364
8.6 Interpretable Ensembles365
Option Trees365
Logistic Model Trees368
8.7 Stacking369
8.8 Further Reading371
8.9 Weka Implementations372
Chapter 9 Moving on:Applications and Beyond375
9.1 Applying Data Mining375
9.2 Learning from Massive Datasets378
9.3 Data Stream Learning380
9.4 Incorporating Domain Knowledge384
9.5 Text Mining386
9.6 Web Mining389
9.7 Adversarial Situmions393
9.8 Ubiquitous Data Mining395
9.9 Further Reading397
PART Ⅲ THE WEKA DATA MINING WORKBENCH403
CHAPTER 10 Introduction to Weka403
10.1 What's in Weka?403
10.2 How Do You Use It?404
10.3 What Else Can You Do?405
10.4 How Do You Get It?406
CHAPTER 11 The Explorer407
11.1 Getting Started407
Preparing the Data407
Loading the Data into the Explorer408
Building a Decision Tree410
Examining the Output411
Doing It Again413
Working with Models414
When Things Go Wrong415
11.2 Exploring the Explorer416
Loading and Filtering Files416
Training and Testing Learning Schemes422
Do It Yourself:The User Classifier424
Using a Metalearner427
Clustering and Association Rules429
Attribute Selection430
Visualization430
11.3 Filtering Algorithms432
Unsupervised Attribute Filters432
Unsupervised Instance Filters441
Supervised Filters443
11.4 Learning Algorithms445
Bayesian Classifiers451
Trees454
Rules457
Functions459
Neural Networks469
Lazy Classifiers472
Multi-Instance Classifiers472
Miscellaneous Classifiers474
11.5 Metalearning Algorithms474
Bagging and Randomization474
Boosting476
Combining Classifiers477
Cost-Sensitive Learning477
Optimizing Performance478
Retargeting Classifiers for Different Tasks479
11.6 Clustering Algorithms480
11.7 Association-Rule Learners485
11.8 Attribute Selection487
Attribute Subset Evaluators488
Single-Attribute Evaluators490
Search Methods492
CHAPTER 12 The Knowledge Flow Interface495
12.1 Getting Started495
12.2 Components498
12.3 Configuring and Connecting the Components500
12.4 Incremental Learning502
CHAPTER 13 The Experimenter505
13.11 Getting Started505
Running an Experiment506
Analyzing the Results509
13.2 Simple Setup510
13.3 Advanced Setup511
13.4 The Analyze Panel512
13.5 Distributing Processing over Several Machines515
CHAPTER 14 The Command-Line Interface519
14.1 Getting Started519
14.2 The Structure of Weka519
Classes,Instances,and Packages520
The weka.core Package520
The weka.classifiers Package523
Other Packages525
Javadoc Indexes525
14.3 Command-Line Options526
Genefic Options526
Scheme-Specific Options529
CHAPTER 15 Embedded Machine Learning531
15.1 A Simple Data Mining Application531
MessageClassifier()536
uppdateData()536
classifyMessage()537
CHAPTER 16 Writing New Learning Schemes539
16.1 An Example Classifier539
buildClassifier()540
makeTree()540
computeInfoGain()549
classifyInstance()549
toSource()550
main()553
16.2 Conventions for Implementing Classifiers555
Capabilities555
CHAPTER 17 Tutorial Exercises for the Weka Explorer559
17.1 Introduction to the Explorer Interface559
Loading a Dataset559
The Dataset Editor560
Applying a Filter561
The Visualize Panel562
The Classify Panel562
17.2 Nearest-Neighbor Learning and Decision Trees566
The Glass Dataset566
Attribute Selection567
Class Noise and Nearest-Neighbor Learning568
Varying the Amount of Training Data569
Interactive Decision Tree Construction569
17.3 Classification Boundaries571
Visualizing 1R571
Visualizing Nearest-Neighbor Learning572
Visualizing Na?ve Bayes573
Visualizing Decision Trees and Rule Sets573
Messing with the Data574
17.4 Preprocessing and Parameter Tuning574
Discretization574
More on Discretization575
Automatic Attribute Selection575
More on Automatic Attribute Selection576
Automatic Parameter Tuning577
17.5 Document Classification578
Data with String Attributes579
Classifying Actual Documents580
Exploring the StringToWordVector Filter581
17.6 Mining Association Rules582
Association-Rule Mining582
Mining a Real-Worid Dataset584
Market Basket Analysis584
REFERENCES587
INDEX607
热门推荐
- 1745211.html
- 3369282.html
- 1257800.html
- 381209.html
- 2714882.html
- 3772764.html
- 3682807.html
- 1027880.html
- 10119.html
- 1901439.html
- http://www.ickdjs.cc/book_2700686.html
- http://www.ickdjs.cc/book_539745.html
- http://www.ickdjs.cc/book_3306599.html
- http://www.ickdjs.cc/book_2292319.html
- http://www.ickdjs.cc/book_2766318.html
- http://www.ickdjs.cc/book_849228.html
- http://www.ickdjs.cc/book_1910206.html
- http://www.ickdjs.cc/book_806197.html
- http://www.ickdjs.cc/book_3100912.html
- http://www.ickdjs.cc/book_1383903.html