图书介绍
数字信号处理 系统分析与设计 原书第2版 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (巴西)迪尼兹等著 著
- 出版社: 北京:机械工业出版社
- ISBN:9787111382539
- 出版时间:2012
- 标注页数:889页
- 文件大小:110MB
- 文件页数:908页
- 主题词:数字信号处理-高等学校-教材-英文
PDF下载
下载说明
数字信号处理 系统分析与设计 原书第2版 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Introduction1
1 Discrete-time signals and systems5
1.1 Introduction5
1.2 Discrete-time signals6
1.3 Discrete-time systems10
1.3.1 Linearity10
1.3.2 Time invariance11
1.3.3 Causality11
1.3.4 Impulse response and convolution sums14
1.3.5 Stability16
1.4 Difference equations and time-domain response17
1.4.1 Recursive×nonrecursive systems21
1.5 Solving difference equations22
1.5.1 Computing impulse responses31
1.6 Sampling of continuous-time signals33
1.6.1 Basic principles34
1.6.2 Sampling theorem34
1.7 Random signals53
1.7.1 Random variable54
1.7.2 Random processes58
1.7.3 Filtering a random signal60
1.8 Do-it-yourself:discrete-time signals and systems62
1.9 Discrete-time signals and systems with MATLAB67
1.10 Summary68
1.11 Exercises68
2 The z and Fourier transforms75
2.1 Introduction75
2.2 Definition of the z transform76
2.3 Inverse z transform83
2.3.1 Computation based on residue theorem84
2.3.2 Computation based on partial-fraction expansions87
2.3.4 Computation based on series expansion92
2.4 Properties of the z transform94
2.4.1 Linearity94
2.4.2 Time reversal94
2.4.3 Time-shift theorem95
2.4.4 Multiplication by an exponential95
2.4.5 Complex differentiation95
2.4.6 Complex conjugation96
2.4.7 Real and imaginary sequences97
2.4.8 Initial-value theorem97
2.4.9 Convolution theorem98
2.4.10 Product of two sequences98
2.4.11 Parseval's theorem100
2.4.12 Table of basic z transforms101
2.5 Transfer functions104
2.6 Stability in the z domain106
2.7 Frequency response109
2.8 Fourier transform115
2.9 Properties of the Fourier transform120
2.9.1 Linearity120
2.9.2 Time reversal120
2.9.3 Time-shift theorem120
2.9.4 Multiplication by a complex exponential(frequency shift,modulation)120
2.9.5 Complex differentiation120
2.9.6 Complex conjugation121
2.9.7 Real and imaginary sequences121
2.9.8 Symmetric and antisymmetric sequences122
2.9.9 Convolution theorem123
2.9.10 Product of two sequences123
2.9.11 Parseval's theorem123
2.10 Fourier transform for periodic sequences123
2.11 Random signals in the transform domain125
2.11.1 Power spectral density125
2.11.2 Whitenoise128
2.12 Do-it-yourself:the z and Fourier transforms129
2.13 The z and Fourier transforms with MATLAB135
2.14 Summary137
2.15 Exercises137
3 Discrete transforms143
3.1 Introduction143
3.2 Discrete Fourier transform144
3.3 Properties of the DFT153
3.3.1 Linearity153
3.3.2 Time reversal153
3.3.3 Time-shift theorem153
3.3.4 Circular frequency-shift theorem(modulation theorem)156
3.3.5 Circular convolution in time157
3.3.6 Correlation158
3.3.7 Complex conjugation159
3.3.8 Real and imaginary sequences159
3.3.9 Symmetric and antisymmetric sequences160
3.3.10 Parseval's theorem162
3.3.11 Relationship between the DFT and the z transform163
3.4 Digital filtering using the DFT164
3.4.1 Linear and circular convolutions164
3.4.2 Overlap-and-add method168
3.4.3 Overlap-and-save method171
3.5 Fast Fourier transform175
3.5.1 Radix-2 algorithm with decimation in time176
3.5.2 Decimation in frequency184
3.5.3 Radix-4 algorithm187
3.5.4 Algorithms for arbitrary values of N192
3.5.5 Alternative techniques for determining the DFT193
3.6 Other discrete transforms194
3.6.1 Discrete transforms and Parseval's theorem195
3.6.2 Discrete transforms and orthogonality196
3.6.3 Discrete cosine transform199
3.6.4 A family of sine and cosine transforms203
3.6.5 Discrete Hartley transform205
3.6.6 Hadamard transform206
3.6.7 Other important transforms207
3.7 Signal representations208
3.7.1 Laplace transform208
3.7.2 The z transform208
3.7.3 Fourier transform(continuous time)209
3.7.4 Fourier transform(discrete time)209
3.7.5 Fourier series210
3.7.6 Discrete Fourier transform210
3.8 Do-it-yourself:discrete transforms211
3.9 Discrete transforms with MATLAB215
3.10 Summary216
3.11 Exercises217
4 Digital filters222
4.1 Introduction222
4.2 Basic structures of nonrecursive digital filters222
4.2.1 Direct form223
4.2.2 Cascade form224
4.2.3 Linear-phase forms225
4.3 Basic structures of recursive digital filters232
4.3.1 Direct forms232
4.3.2 Cascade form236
4.3.3 Parallel form237
4.4 Digital network analysis241
4.5 State-space description244
4.6 Basic properties of digital networks246
4.6.1 Tellegen's theorem246
4.6.2 Reciprocity248
4.6.3 Interreciprocity249
4.6.4 Transposition249
4.6.5 Sensitivity250
4.7 Useful building blocks257
4.7.1 Second-order building blocks257
4.7.2 Digital oscillators260
4.7.3 Comb filter261
4.8 Do-it-yourself:digital filters263
4.9 Digital filter forms with MATLAB266
4.10 Summary270
4.11 Exercises270
5 FIR filter approximations277
5.1 Introduction277
5.2 Ideal characteristics of standard filters277
5.2.1 Lowpass,highpass,bandpass,and bandstop filters278
5.2.2 Differentiators280
5.2.3 Hilbert transformers281
5.2.4 Summary283
5.3 FIR filter approximation by frequency sampling283
5.4 FIR filter approximation with window functions291
5.4.1 Rectangular window294
5.4.2 Triangular windows295
5.4.3 Hamming and Hann windows296
5.4.4 Blackman window297
5.4.5 Kaiser window299
5.4.6 Dolph-Chebyshev window306
5.5 Maximally flat FIR filter approximation309
5.6 FIR filter approximation by optimization313
5.6.1 Weighted least-squares method317
5.6.2 Chebyshev method321
5.6.3 WLS-Chebyshev method327
5.7 Do-it-yourself:FIR filter approximations333
5.8 FIR filter approximation with MATLAB336
5.9 Summary342
5.10 Exercises343
6 IIR filter approximations349
6.1 Introduction349
6.2 Analog filter approximations350
6.2.1 Analog filter specification350
6.2.2 Butterworth approximation351
6.2.3 Chebyshev approximation353
6.2.4 Elliptic approximation356
6.2.5 Frequency transformations359
6.3 Continuous-time to discrete-time transformations368
6.3.1 Impulse-invafiance method368
6.3.2 Bilinear transformation method372
6.4 Frequency transformation in the discrete-time domain378
6.4.1 Lowpass-to-lowpass ffansformation379
6.4.2 Lowpass-to-highpass transformation380
6.4.3 Lowpass-to-bandpass transformation380
6.4.4 Lowpass-to-bandstop transformation381
6.4.5 Variable-cutoff filter design381
6.5 Magnitude and phase approximation382
6.5.1 Basic principles382
6.5.2 Multivariable function minimization method387
6.5.3 Alternative methods389
6.6 Time-domain approximation391
6.6.1 Approximate approach393
6.7 Do-it-yourself:IIR filter approximations394
6.8 IIR filter approximation with MATLAB399
6.9 Summary403
6.10 Exercises404
7 Spectral estimation409
7.1 Introduction409
7.2 Estimation theory410
7.3 Nonparametric spectral estimation411
7.3.1 Periodogram411
7.3.2 Periodogrum variations413
7.3.3 Minimum-variance spectral estimator416
7.4 Modeling theory419
7.4.1 Rational transfer-function models419
7.4.2 Yule-Walker equations423
7.5 Parametric spectral estimation426
7.5.1 Linear prediction426
7.5.2 Covariance method430
7.5.3 Autocorrelation method431
7.5.4 Levinson-Durbin algorithm432
7.5.5 Burg's method434
7.5.6 Relationship of the Levinson-Durbin algorithm to a lattice structure438
7.6 Wiener filter438
7.7 Other methods for spectral estimation441
7.8 Do-it-yourself:spectral estimation442
7.9 Spectral estimation with MATLAB449
7.10 Summary450
7.11 Exercises451
8 Multirate systems455
8.1 Introduction455
8.2 Basic principles455
8.3 Decimation456
8.4 Interpolation462
8.4.1 Examples of interpolators464
8.5 Rational sampling-rate changes465
8.6 Inverse operations466
8.7 Noble identities467
8.8 Polyphase decompositions469
8.9 Commutator models471
8.10 Decimation and interpolation for efficient filter implementation474
8.10.1 Narrowband FIR filters474
8.10.2 Wideband FIR filters with narrow transition bands477
8.11 Overlapped block filtering479
8.11.1 Nonoverlapped case480
8.11.2 Overlapped input and output483
8.11.3 Fast convolution structure Ⅰ487
8.11.4 Fast convolution structure Ⅱ487
8.12 Random signals in multirate systems490
8.12.1 Interpolated random signals491
8.12.2 Decimated random signals492
8.13 Do-it-yourself:multirate systems493
8.14 Multirate systems with MATLAB495
8.15 Summary497
8.16 Exercises498
9 Filter banks503
9.1 Introduction503
9.2 Filter banks503
9.2.1 Decimation of a bandpass signal504
9.2.2 Inverse decimation of a bandpass signal505
9.2.3 Critically decimated M-band filter banks506
9.3 Perfect reconstruction507
9.3.1 M-band filter banks in terms of polyphase components507
9.3.2 Perfect reconstruction M-band filter banks509
9.4 Analysis of M-band filter banks517
9.4.1 Modulation matrix representation518
9.4.2 Time-domain analysis520
9.4.3 Orthogonality and biorthogonality in filter banks529
9.4.4 Transmultiplexers534
9.5 General two-band perfect reconstruction filter banks535
9.6 QMF filterbanks540
9.7 CQF filterbanks543
9.8 Block transforns548
9.9 Cosine-modulated filter banks554
9.9.1 The optimization problem in the design of cosine-modulated filter banks559
9.10 Lapped transforms563
9.10.1 Fast algorithms and biorthogonal LOT573
9.10.2 Generalized LOT576
9.11 Do-it-yourself:filter banks581
9.12 Filter banks with MATLAB594
9.13 Summary594
9.14 Exercises595
10 Wavelet transforms599
10.1 Introduction599
10.2 Wavelet transforms599
10.2.1 Hierarchical filter banks599
10.2.2 Wavelets601
10.2.3 Scaling functions605
10.3 Relation between x(t)and x(n)606
10.4 Wavelet transforms and time-frequency analysis607
10.4.1 The short-time Fourier transform607
10.4.2 The continuous-time wavelet transform612
10.4.3 Sampling the continuous-time wavelet transform:the discrete wavelet transform614
10.5 Multiresolution representation617
10.5.1 Biorthogonal multiresolution representation620
10.6 Wavelet transforms and filter banks623
10.6.1 Relations between the filter coefficients629
10.7 Regularity633
10.7.1 Additional constraints imposed on the filter banks due to the regularity condition634
10.7.2 Apractical estimate of regularity635
10.7.3 Number of vanishing moments636
10.8 Examples of wavelets638
10.9 Wavelet transforms of images641
10.10 Wavelet transforms of finite-length signals646
10.10.1 Periodic signal extension646
10.10.2 Symmetric signal extensions648
10.11 Do-it-yourself:wavelet transforms653
10.12 Wavelets with MATLAB659
10.13 Summary664
10.14 Exercises665
11 Finite-precision digital signal processing668
11.1 Introduction668
11.2 Binary number representation670
11.2.1 Fixed-point representations670
11.2.2 Signed power-of-two representation672
11.2.3 Floating-point representation673
11.3 Basic elements674
11.3.1 Properties of the two's-complement representation674
11.3.2 Serial adder674
11.3.3 Serial multiplier676
11.3.4 Parallel adder684
11.3.5 Parallel multiplier684
11.4 Distributed arithmetic implementation685
11.5 Product quantization691
11.6 Signal scaling697
11.7 Coefficient quantization706
11.7.1 Deterministic sensitivity criterion708
11.7.2 Statistical forecast of the wordlength711
11.8 Limit cycles715
11.8.1 Granular limit cycles715
11.8.2 Overflow limit cycles717
11.8.3 Elimination of zero-input limit cycles719
11.8.4 Elimination of constant-input limit cycles725
11.8.5 Forced-response stability ofdigital filters with nonlinearities due to overflow729
11.9 Do-it-yourself:finite-precision digital signal processing732
11.10 Finite-precision digital signal processing with MATLAB735
11.11 Summary735
11.12 Exercises736
12 Efficient FIR structures740
12.1 Introduction740
12.2 Latticeform740
12.2.1 Filter banks using the lattice form742
12.3 Polyphase form749
12.4 Frequency-domain form750
12.5 Recursive running sum form750
12.6 Modified-sinc flter752
12.7 Realizations with reduced number of arithmetic operations753
12.7.1 Prefilter approach753
12.7.2 Interpolation approach756
12.7.3 Frequency-response masking approach760
12.7.4 Quadrature approach771
12.8 Do-it-yourself:efficient FIR structures776
12.9 Efficient FIR structures with MATLAB781
12.10 Summary782
12.11 Exercises782
13 Efficient IIR structures787
13.1 Introduction787
13.2 IIR parallel and cascade filters787
13.2.1 Parallel form788
13.2.2 Cascade form790
13.2.3 Error spectrum shaping795
13.2.4 Closed-form scaling797
13.3 State-space sections800
13.3.1 Optimal state-space sections801
13.3.2 State-space sections without limit cycles806
13.4 Lattice filters815
13.5 Doubly complementary filters822
13.5.1 QMF filter bank implementation826
13.6 Wave filters828
13.6.1 Motivation829
13.6.2 Wave elements832
13.6.3 Lattice wave digital filters848
13.7 Do-it-yourself:efficient IIR structures855
13.8 Efficient IIR structures with MATLAB857
13.9 Summary857
13.10 Exercises858
References863
Index877
热门推荐
- 2130774.html
- 3891560.html
- 2605366.html
- 1852103.html
- 2534474.html
- 2656156.html
- 1342959.html
- 1188530.html
- 3840590.html
- 3752529.html
- http://www.ickdjs.cc/book_473750.html
- http://www.ickdjs.cc/book_853114.html
- http://www.ickdjs.cc/book_2329604.html
- http://www.ickdjs.cc/book_2459852.html
- http://www.ickdjs.cc/book_1444692.html
- http://www.ickdjs.cc/book_390263.html
- http://www.ickdjs.cc/book_2264943.html
- http://www.ickdjs.cc/book_974912.html
- http://www.ickdjs.cc/book_894558.html
- http://www.ickdjs.cc/book_1062968.html