图书介绍

原子和量子物理学2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

原子和量子物理学
  • H.Haken,H.C.Wolf 著
  • 出版社: 北京:世界图书出版公司北京公司
  • ISBN:7506259540
  • 出版时间:2003
  • 标注页数:503页
  • 文件大小:29MB
  • 文件页数:527页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

原子和量子物理学PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1. Introduction1

1.1 Classical Physics and Quantum Mechanics1

1.2 Short Historical Review1

2. The Mass and Size of the Atom5

2.1 What is an Atom?5

2.2 Determination of the Mass5

2.3 Methods for Determining Avogadro’s Number7

2.3.1 Electrolysis7

2.3.2 The Gas Constant and Boltzmann’s Constant7

2.3.3 X-Ray Diffraction in Crystals8

2.3.4 Determination Using Radioactive Decay9

2.4 Determination of the Size of the Atom10

2.4.1 Application of the Kinetic Theory of Gases10

2.4.2 The Interaction Cross Section11

2.4.3 Experimental Determination of Interaction Cross Sections14

2.4.4 Determining the Atomic Size from the Covolume15

2.4.5 Atomic Sizes from X-Ray Diffraction Measurements on Crystals15

2.4.6 Can Individual Atoms Be Seen?20

Problems25

3. Isotopes27

3.1 The Periodic System of the Elements27

3.2 Mass Spectroscopy29

3.2.1 Parabola Method29

3.2.2 Improved Mass Spectrometers32

3.2.3 Results of Mass Spectrometry33

3.2.4 Modern Applications of the Mass Spectrometer34

3.2.5 Isotope Separation35

Problems36

4. The Nucleus of the Atom37

4.1 Passage of Electrons Through Matter37

4.2 Passage of Alpha Particles Through Matter(Rutherford Scattering)39

4.2.1 Some Properties of Alpha Particles39

4.2.2 Scattering of Alpha Particles by a Foil39

4.2.3 Derivation of the Rutherford Scattering Formula41

4.2.4 Experimental Results46

4.2.5 What is Meant by Nuclear Radius?47

Problems48

5. The Photon49

5.1Wave Character of Light49

5.2Thermal Radiation51

5.2.1 Spectral Distribution of Black Body Radiation51

5.2.2 Planck’s Radiation Formula53

5.2.3 Einstein’s Derivation of Planck’s Formula54

5.3The Photoelectric Effect58

5.4 The Compton Effect60

5.4.1 Experiments60

5.4.2 Derivation of the Compton Shift62

Problems64

6. The Electron69

6.1 Production of Free Electrons69

6.2 Size of the Electron69

6.3 The Charge of the Electron70

6.4 The Specific Charge e/m of the Electron71

6.5 Wave Character of Electrons and Other Particles74

6.6 Interferometry with Atoms78

Problems79

7. Some Basic Properties of Matter Waves81

7.1 Wave Packets81

7.2 Probabilistic Interpretation85

7.3 The Heisenberg Uncertainty Relation87

7.4 The Energy-Time Uncertainty Relation89

7.5 Some Consequences of the Uncertainty Relations for Bound States90

Problems93

8. Bohr’s Model of the Hydrogen Atom95

8.1 Basic Principles of Spectroscopy95

8.2 The Optical Spectrum of the Hydrogen Atom97

8.3 Bohr’s Postulates100

8.4 Some Quantitative Conclusions104

8.5 Motion of the Nucleus105

8.6 Spectra of Hydrogen-like Atoms107

8.7 Muonic Atoms109

8.8 Excitation of Quantum Jumps by Collisions111

8.9 Sommerfeld’s Extension of the Bohr Model and the Experimental Justification of a Second Quantum Number114

8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change115

8.11 Limits of the Bohr-Sommerfeld Theory.The Correspondence Principle116

8.12 Rydberg Atoms117

8.13 Positronium,Muonium,and Antihydrogen119

Problems121

9. The Mathematical Framework of Quantum Theory125

9.1The Particle in a Box125

9.2The Schr?dinger Equation129

9.3. The Conceptual Basis of Quantum Theory131

9.3.1 Observations, Values of Measurements and Operators131

9.3.2 Momentum Measurement and Momentum Probability132

9.3.3 Average Values and Expectation Values133

9.3.4 Operators and Expectation Values136

9.3.5 Equations for Determining the Wavefunction137

9.3.6 Simultaneous Observability and Commutation Relations139

9.4.The Quantum Mechanical Oscillator142

Problems148

10. Quantum Mechanics of the Hydrogen Atom153

10.1 Motion in a Central Field153

10.2 Angular Momentum Eigenfunctions155

10.3 The Radial Wavefunctions in a Central Field161

10.4 The Radial Wavefunctions of Hydrogen163

Problems169

11. Lifting of the Orbital Degeneracy in the Spectra of Alkali Atoms171

11.1 Shell Structure171

11.2 Screening173

11.3 The Term Diagram174

11.4 Inner Shells179

Problems179

12. Orbital and Spin Magnetism. Fine Structure181

12.1 Introduction and Overview181

12.2 Magnetic Moment of the Orbital Motion182

12.3 Precession and Orientation in a Magnetic Field184

12.4 Spin and Magnetic Moment of the Electron186

12.5 Determination of the Gyromagnetic Ratio by the Einstein-de Haas Method188

12.6 Detection of Directional Quantisation by Stern and Gerlach189

12.7 Fine Structure and Spin-Orbit Coupling: Overview191

12.8 Calculation of Spin-Orbit Splitting in the Bohr Model192

12.9 Level Scheme of the Alkali Atoms196

12.10 Fine Structure in the Hydrogen Atom197

12.11 The Lamb Shift198

Problems202

13. Atoms in a Magnetic Field:Experiments and Their Semiclassical Description205

13.1 Directional Quantisation in a Magnetic Field205

13.2 Electron Spin Resonance205

13.3 The Zeeman Effect208

13.3.1 Experiments208

13.3.2 Explanation of the Zeeman Effect from the Standpoint of Classical Electron Theory210

13.3.3 Description of the Ordinary Zeeman Effect by the Vector Model212

13.3.4 The Anomalous Zeeman Effect214

13.3.5 Magnetic Moments with Spin-Orbit Coupling215

13.4 The Paschen-Back Effect217

13.5 Double Resonance and Optical Pumping218

Problems220

14. Atoms in a Magnetic Field:Quantum Mechanical Treatment223

14.1 Quantum Theory of the Ordinary Zeeman Effect223

14.2 Quantum Theoretical Treatment of the Electron and Proton Spins225

14.2.1 Spin as Angular Momentum225

14.2.2 Spin Operators,Spin Matrices and Spin Wavefunctions226

14.2.3 The Schr?dinger Equation of a Spin in a Magnetic Field228

14.2.4 Description of Spin Precession by Expectation Values230

14.3 Quantum Mechanical Treatment of the Anomalous Zeeman Effect with Spin-Orbit Coupling232

14.4 Quantum Theory of a Spin in Mutually Perpendicular Magnetic Fields,One Constant and One Time Dependent236

14.5 The Bloch Equations241

14.6 The Relativistic Theory of the Electron. The Dirac Equation243

Problems249

15. Atoms in an Electric Field251

15.1 Observations of the Stark Effect251

15.2 Quantum Theory of the Linear and Quadratic Stark Effects253

15.2.1 The Hamiltonian253

15.2.2 The Quadratic Stark Effect.Perturbation Theory Without Degeneracy254

15.2.3 The Linear Stark Effect.Perturbation Theory in the Presence of Degeneracy257

15.3 The Interaction of a Two-Level Atom with a Coherent Radiation Field260

15.4 Spin and Photon Echoes263

15.5 A Glance at Quantum Electrodynamics266

15.5.1 Field Quantization266

15.5.2 Mass Renormalization and Lamb Shift271

Problems278

16. General Laws of Optical Transitions281

16.1 Symmetries and Selection Rules281

16.1.1 Optical Matrix Elements281

16.1.2 Examples of the Symmetry Behaviour of Wavefunctions281

16.1.3 Selection Rules286

16.1.4 Selection Rules and Multipole Radiation289

16.2 Linewidths and Lineshapes292

17. Many-Electron Atoms297

17.1 The Spectrum of the Helium Atom297

17.2 Electron Repulsion and the Pauli Principle299

17.3 Angular Momentum Coupling300

17.3.1 Coupling Mechanism300

17.3.2 LS Coupling(Russell-Saunders Coupling)300

17.3.3 jj Coupling304

17.4 Magnetic Moments of Many-Electron Atoms306

17.5 Multiple Excitations307

Problems307

18. X-Ray Spectra,Internal Shells309

18.1 Introducto Remarks309

18.2 X-Radiation from Outer Shells309

18.3 X-Ray Bremsstrahlung Spectra310

18.4 Emission Line Spectra: Characteristic Radiation312

18.5 Fine Structure of the X-Ray Spectra314

18.6 Absorption Spectra316

18.7 The Auger Effect318

18.8 Photoelectron Spectroscopy(XPS),ESCA320

Problems322

19. Structure of the Periodic System.Ground States of the Elements323

19.1 Periodic System and Shell Structure323

19.2 From the Electron Configuration to the Atomic Term Scheme.Atomic Ground States330

19.3 Excited States of Atoms and Possible Electronic Configurations.Complete Term Schemes333

19.4 The Many-Electron Problem. Hartree-Fock Method335

19.4.1 The Two-Electron Problem335

19.4.2 Many Electrons Without Mutual Interactions340

19.4.3 Coulomb Interaction of Electrons.Hartree and Hartree-Fock Methods341

Problems344

20. Nuclear Spin,Hyperfine Structure347

20.1 Influence of the Atomic Nucleus on Atomic Spectra347

20.2 Spins and Magnetic Moments of Atomic Nuclei348

20.3 The Hyperfine Interaction350

20.4 Hyperfine Structure in the Ground State of the Hydrogen Atom,the Sodium Atom,and the Hydrogen-like Ion 83Bi82﹢354

20.5 Hyperfine Structure in an External Magnetic Field,Electron Spin Resonance356

20.6 Direct Measurements of Nuclear Spins and Magnetic Moments,Nuclear Magnetic Resonance361

20.7 Applications of Nuclear Magnetic Resonance364

20.8 The Nuclear Electric Quadrupole Moment369

Problems371

21. The Laser373

21.1 Some Basic Concepts for the Laser373

21.2 Rate Equations and Lasing Conditions376

21.3 Amplitude and Phase of Laser Light379

Problems382

22. Modern Methods of Optical Spectroscopy385

22.1 Classical Methods385

22.2 Quantum Beats386

22.3 Doppler-free Saturation Spectroscopy388

22.4 Doppler-free Two-Photon Absorption390

22.5 Level-Crossing Spectroscopy and the Hanle Effect392

22.6 Laser Cooling of Atoms394

22.7 Nondestructive Single-Photon Detection An Example of Atomic Physics in a Resonant Cavity399

Problems401

23. Progress in Quantum Physics:A Deeper Understanding and New Applications403

23.1 Introduction403

23.2 The Superposition Principle,Interference,Probabilily and Probability Amplitudes403

23.3 Schr?dinger’s Cat405

23.4 Decoherence405

23.5 Entanglement406

23.6 The Einstein-Podolsky-Rosen(EPR)Paradox407

23.7 Bell’s Inequalities and the Hidden-Variable Hypothesis408

23.8 Experiments to Test Bell’s Inequalities411

23.9 Quantum Computers412

23.9.1 Historical Remarks412

23.9.2 Review of Digital Computers413

23.9.3 Basic Concepts of the Quantum Computer414

23.9.4 Decoherence and Error Correction416

23.9.5 A Comparison Between the Quantum Computer and the Digital Computer418

23.10 Quantum Information Theory418

23.11 The Bose-Einstein Condensation418

23.11.1 Review of Statistical Mechanics418

23.11.2 The Experimental Discovery419

23.11.3 The Quantum Theory of the Bose-Einstein Condensation421

23.12 The Atom Laser422

Problems423

24. Fundamentals of the Quantum Theory of Chemical Bonding425

24.1Introductory Remarks425

24.2 The Hydrogen-Molecule Ion H﹢2425

24.3 The Tunnel Effect431

24.4 The Hydrogen Molecule H2433

24.5Covalent-Ionic Resonance440

24.6 The Hund-Mulliken-Bloch Theory of Bonding in Hydrogen441

24.7Hybridisation442

24.8 The π Electrons of Benzene,C6H6444

Problems446

Appendix447

A. The Dirac Delta Function and the Normalisation of the Wavefunction of a Free Particle in Unbounded Space447

B. Some Properties of the Hamiltonian Operator, Its Eigenfunctions and its Eigenvalues451

C. Derivation of Heisenberg’s Uncertainty Relation452

Solutions to the Problems455

Bibliography of Supplementary and Specialised Literature485

Subject Index493

热门推荐