图书介绍
实分析与复分析 第3版 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (美)鲁丁(Rudin,W.)著 著
- 出版社: 北京:机械工业出版社
- ISBN:7111133056
- 出版时间:2004
- 标注页数:416页
- 文件大小:14MB
- 文件页数:428页
- 主题词:实分析-英文;复分析-英文
PDF下载
下载说明
实分析与复分析 第3版 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Prologue:The Exponential Function1
Chapter 1 Abstract Integration5
Set-theoretic notations and terminology6
The concept of measurability8
Simple functions15
Elementary properties of measures16
Arithmetic in [0,∞]18
Integration of positive functions19
Integration of complex functions24
The role played by sets of measure zero27
Exercises31
Chapter 2 Positive Borel Measures33
Vector spaces33
Topological preliminaries35
The Riesz representation theorem40
Regularity properties of Borel measures47
Lebesgue measure49
Continuity properties of measurable functions55
Exercises57
Chapter 3 LP-Spaces61
Convex functions and inequalities61
The LP-spaces65
Approximation by continuous functions69
Exercises71
Chapter 4 Elementary Hilbert Space Theory76
Inner products and linear functionals76
Orthonormal sets82
Trigonometric series88
Exercises92
Chapter 5 Examples of Banach Space Techniques95
Banach spaces95
Consequences of Baire s theorem97
Fourier series of continuous functions100
Fourier coefficients of L1-functions103
The Hahn-Banach theorem104
An abstract approach to the Poisson integral108
Exercises112
Chapter 6 Complex Measures116
Total variation116
Absolute continuity120
Consequences of the Radon-Nikodym theorem124
Bounded linear functionals on Lp126
The Riesz representation theorem129
Exercises132
Derivatives of measures135
Chapter 7 Differentiation135
The fundamental theorem of Calculus144
Differentiable transformations150
Exercises156
Chapter 8 Integration on Product Spaces160
Measurability on cartesian products160
Product measures163
The Fubini theorem164
Completion of product measures167
Convolutions170
Distribution functions172
Exercises174
Chapter 9 Fourier Transforms178
Formal properties178
The inversion theorem180
The Plancherel theorem185
The Banach algebra L1190
Exercises193
Complex differentiation196
Chapter 10 Elementary Properties of Holomorphic Functions196
Integration over paths200
The local Cauchy theorem204
The power series representation208
The open mapping theorem214
The global Cauchy theorem217
The calculus of residues224
Exercises227
The Cauchy-Riemann equations231
Chapter 11 Harmonic Functions231
The Poisson integral233
The mean value property237
Boundary behavior of Poisson integrals239
Representation theorems245
Exercises249
Chapter 12 The Maximum Modulus Principle253
Introduction253
The Schwarz lemma254
The Phragrnen-Lindel?f method256
An interpolation theorem260
A converse of the maximum modulus theorem262
Exercises264
Chapter 13 Approximation by Rational Functions266
Preparation266
Runge s theorem270
The Mittag-Leffler theorem273
Simply connected regions274
Exercises276
Chapter 14 Conformal Mapping278
Preservation of angles278
Linear fractional transformations279
Normal families281
The Riemann mapping theorem282
The class ?285
Continuity at the boundary289
Conformal mapping of an annulus291
Exercises293
Chapter 15 Zeros of Holomorphic Functions298
Infinite products298
The Weierstrass factorization theorem301
An interpolation problem304
Jensen’s formula307
Blaschke products310
The Müntz-Szasz theorem312
Exercises315
Regular points and singular points319
Chapter 16 Analytic Continuation319
Continuation along curves323
The monodromy theorem326
Construction of a modular function328
The Picard theorem331
Exercises332
Chapter 17 Hp-Spaces335
Subharmonic functions335
The s?aces Hp and N337
The theorem of F.and M.Riesz341
Factorization theorems342
The shift Operator346
Conjugate functions350
Exercises352
Chapter 18 Elementary Theory of Banach Algebras356
Introduction356
The invertible elements357
Ideals and homomorphisms362
Applications365
Exercises369
Chapter 19 Holomorphic Fourier Transforms371
Introduction371
Two theorems of Paley and Wiener372
Quasi-analytic classes377
The Denjoy-Carleman theorem380
Exercises383
Introduction386
chapter 20 Uniform Approximation by Polynomials386
Some lemmas387
Mergelyan’s theorem390
Exercises394
Appendix:Hausdorff s Maximality Theorem395
Notes and Comments397
Bibliography405
List of Special Symbols407
Index409
热门推荐
- 1102427.html
- 3906326.html
- 2826077.html
- 1331624.html
- 3105806.html
- 2049444.html
- 2013389.html
- 2815121.html
- 1651747.html
- 2329791.html
- http://www.ickdjs.cc/book_2111951.html
- http://www.ickdjs.cc/book_1704770.html
- http://www.ickdjs.cc/book_1646163.html
- http://www.ickdjs.cc/book_964759.html
- http://www.ickdjs.cc/book_3616942.html
- http://www.ickdjs.cc/book_969400.html
- http://www.ickdjs.cc/book_1889618.html
- http://www.ickdjs.cc/book_911638.html
- http://www.ickdjs.cc/book_1060653.html
- http://www.ickdjs.cc/book_3136789.html