图书介绍

偏微分方程引论 影印版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

偏微分方程引论 影印版
  • MichaelRenardyandRobertC.Rogers著 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030313881
  • 出版时间:2011
  • 标注页数:437页
  • 文件大小:15MB
  • 文件页数:450页
  • 主题词:偏微分方程-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

偏微分方程引论 影印版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Basic Mathematical Questions2

1.1.1 Existence2

1.1.2 Multiplicity4

1.1.3 Stability6

1.1.4 Linear Systems of ODEs and Asymptotic Stability7

1.1.5 Well-Posed Problems8

1.1.6 Representations9

1.1.7 Estimation10

1.1.8 Smoothness12

1.2 Elementary Partial Differential Equations14

1.2.1 Laplace's Equation15

1.2.2 The Heat Equation24

1.2.3 The Wave Equation30

2 Characteristics36

2.1 Classification and Characteristics36

2.1.1 The Symbol of a Differential Expression37

2.1.2 Scalar Equations of Second Order38

2.1.3 Higher-Order Equations and Systems41

2.1.4 Nonlinear Equations44

2.2 The Cauchy-Kovalevskaya Theorem46

2.2.1 Real Analytic Punctions46

2.2.2 Majorization50

2.2.3 Statement and Proof of the Theorem51

2.2.4 Reduction of General Systems53

2.2.5 A PDE without Solutions57

2.3 Holmgren's Uniqueness Theorem61

2.3.1 An Outline of the Main Idea61

2.3.2 Statement and Proof of the Theorem62

2.3.3 The WeierstraβApproximation Theorem64

3 Conservation Laws and Shocks67

3.1 Systems in One Space Dimension68

3.2 Basic Definitions and Hypotheses70

3.3 Blowup of Smooth Solutions73

3.3.1 Single Conservation Laws73

3.3.2 The p System76

3.4 Weak Solutions77

3.4.1 The Rankine-Hugoniot Condition79

3.4.2 Multiplicity81

3.4.3 The Lax Shock Condition83

3.5 Riemann Problems84

3.5.1 Single Equations85

3.5.2 Systems86

3.6 Other Selection Criteria94

3.6.1 The Entropy Condition94

3.6.2 Viscosity Solutions97

3.6.3 Uniqueness99

4 Maximum Principles101

4.1 Maximum Principles of Elliptic Problems102

4.1.1 The Weak Maximum Principle102

4.1.2 The Strong Maximum Principle103

4.1.3 A Priori Bounds105

4.2 An Existence Proof for the Dirichlet Problem107

4.2.1 The Dirichlet Problem on a Ball108

4.2.2 Subharmonic Functions109

4.2.3 The Arzela-Ascoli Theorem110

4.2.4 Proof of Theorem 4.13112

4.3 Radial Symmetry114

4.3.1 Two Auxiliary Lemmas114

4.3.2 Proof of the Theorem115

4.4 Maximum Principles for Parabolic Equations117

4.4.1 The Weak Maximum Principle117

4.4.2 The Strong Maximum Principle118

5 Distributions122

5.1 Test Functions and Distributions122

5.1.1 Motivation122

5.1.2 Test Functions124

5.1.3 Distributions126

5.1.4 Localization and Regularization129

5.1.5 Convergencc of Distributions130

5.1.6 Tempered Distributions132

5.2 Derivatives and Integrals135

5.2.1 Basic Definitions135

5.2.2 Examples136

5.2.3 Primitives and Ordinary Differential Equations140

5.3 Convolutions and Fundamental Solutions143

5.3.1 The Direct Product of Distributions143

5.3.2 Convolution of Distributions145

5.3.3 Fundamental Solutions147

5.4 The Fourier Transform151

5.4.1 Fourier Transforms of Test Functions151

5.4.2 Fourier Transforms of Tempered Distributions153

5.4.3 The Fundamental Solution for the Wave Equation156

5.4.4 Fourier Transform of Convolutions158

5.4.5 Laplace Transforms159

5.5 Green's Functions163

5.5.1 Boundary-Value Problems and their Adjoints163

5.5.2 Green's Functions for Boundary-Value Problems167

5.5.3 Boundary Integral Methods170

6 Function Spaces174

6.1 Banach Spaces and Hilbert Spaces174

6.1.1 Banach Spaces174

6.1.2 Examples of Banach Spaces177

6.1.3 Hilbert Spaces180

6.2 Bases in Hilbert Spaces184

6.2.1 The Existence of a Basis184

6.2.2 Fourier Series188

6.2.3 Orthogonal Polynomials190

6.3 Duality and Weak Convergence194

6.3.1 Bounded Linear Mappings194

6.3.2 Examples of Dual Spaces195

6.3.3 The Hahn-Banach Theorem197

6.3.4 The Uniform Boundedness Theorem198

6.3.5 Weak Convergence199

7 Sobolev Spaces203

7.1 Basic Definitions204

7.2 Characterizations of Sobolev Spaces207

7.2.1 Some Comments on the DomainΩ207

7.2.2 Sobolev Spaces and Fourier Transform208

7.2.3 The Sobolev Imbedding Theorem209

7.2.4 Compactness Properties210

7.2.5 The Trace Theorem214

7.3 Negative Sobolev Spaces and Duality218

7.4 Technical Results220

7.4.1 Density Theorems220

7.4.2 Coordinate Transformations and Sobolev Spaces on Manifolds221

7.4.3 Extension Theorems223

7.4.4 Problems225

8 Operator Theory228

8.1 Basic Definitions and Examples229

8.1.1 Operators229

8.1.2 Inverse Operators230

8.1.3 Bounded Operators,Extensions230

8.1.4 Examples of Operators232

8.1.5 Closed Operators237

8.2 The Open Mapping Theorem241

8.3 Spectrum and Resolvent244

8.3.1 The Spectra of Bounded Operators246

8.4 Symmetry and Self-adjointness251

8.4.1 The Adjoint Operator251

8.4.2 The Hilbert Adjoint Operator253

8.4.3 Adjoint Operators and Spectral Theory256

8.4.4 Proof of the Bounded Inverse Theorem for Hilbert Spaces257

8.5 Compact Operators259

8.5.1 The Spectrum of a Compact Operator265

8.6 Sturm-Liouville Boundary-Value Problems271

8.7 The Fredholm Index279

9 Linear Elliptic Equations283

9.1 Definitions283

9.2 Existence and Uniqueness of Solutions of the Dirichlet Problem287

9.2.1 The Dirichlet Problem—Types of Solutions287

9.2.2 The Lax-Milgram Lemma290

9.2.3 G?rding's Inequality292

9.2.4 Existence of Weak Solutions298

9.3 Eigenfunction Expansions300

9.3.1 Fredholm Theory300

9.3.2 Eigenfunction Expansions302

9.4 General Linear Elliptic Problems303

9.4.1 The Neumann Problem304

9.4.2 The Complementing Condition for Elliptic Systems306

9.4.3 The Adjoint Boundary-Value Problem311

9.4.4 Agmon's Condition and Coercive Problems315

9.5 Interior Regularity318

9.5.1 Difference Quotients321

9.5.2 Second-Order Scalar Equations323

9.6 Boundary Regularity324

10 Nonlinear Elliptic Equations335

10.1 Perturbation Results335

10.1.1 The Banach Contraction Principle and the Implicit Function Theorem336

10.1.2 Applications to Elliptic PDEs339

10.2 Nonlinear Variational Problems342

10.2.1 Convex problems342

10.2.2 Nonconvex Problems355

10.3 Nonlinear Operator Theory Methods359

10.3.1 Mappings on Finite-Dimensional Spaces359

10.3.2 Monotone Mappings on Banach Spaces363

10.3.3 Applications of Monotone Operators to Nonlinear PDEs366

10.3.4 Nemytskii Operators370

10.3.5 Pseudo-monotone Operators371

10.3.6 Application to PDEs374

11 Energy Methods for Evolution Problems380

11.1 Parabolic Equations380

11.1.1 Banach Space Valued Functions and Distributions380

11.1.2 Abstract Parabolic Initial-Value Problems382

11.1.3 Applications385

11.1.4 Regularity of Solutions386

11.2 Hyperbolic Evolution Problems388

11.2.1 Abstract Second-Order Evolution Problems388

11.2.2 Existence of a Solution389

11.2.3 Uniqueness of the Solution391

11.2.4 Continuity of the Solution392

12 Semigroup Methods395

12.1 Semigroups and Infinitesimal Generators397

12.1.1 Strongly Continuous Semigroups397

12.1.2 The Infinitesimal Generator399

12.1.3 Abstract ODEs401

12.2 The Hille-Yosida Theorem403

12.2.1 The Hille-Yosida Theorem403

12.2.2 The Lumer-Phillips Theorem406

12.3 Applications to PDEs408

12.3.1 Symmetric Hyperbolic Systems408

12.3.2 The Wave Equation410

12.3.3 The Schr?dinger Equation411

12.4 Analytic Semigroups413

12.4.1 Analytic Semigroups and Their Generators413

12.4.2 Fractional Powers416

12.4.3 Perturbations of Analytic Semigroups419

12.4.4 Regularity of Mild Solutions422

A References426

A.1 Elementary Texts426

A.2 Basic Graduate Texts427

A.3 Specialized or Advanced Texts427

A.4 Multivolume or Encyclopedic Works429

A.5 Other Refcrences429

Index431

热门推荐