图书介绍
湍流 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (美)波普著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510005732
- 出版时间:2010
- 标注页数:771页
- 文件大小:36MB
- 文件页数:805页
- 主题词:湍流-教材-英文
PDF下载
下载说明
湍流 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART ONE:FUNDAMENTALS1
1 Introduction3
1.1 The nature of turbulent flows3
1.2 The study of turbulent flows7
2 The equations of fluid motion10
2.1 Continuum fluid properties10
2.2 Eulerian and Lagrangian fields12
2.3 The continuity equation14
2.4 The momentum equation16
2.5 The role of pressure18
2.6 Conserved passive scalars21
2.7 The vorticity equation22
2.8 Rates of strain and rotation23
2.9 Transformation properties24
3 The statistical description of turbulent flows34
3.1 The random nature of turbulence34
3.2 Characterization of random variables37
3.3 Examples of probability distributions43
3.4 Joint random variables54
3.5 Normal and joint-normal distributions61
3.6 Random processes65
3.7 Random fields74
3.8 Probability and averaging79
4 Mean-flow equations83
4.1 Reynolds equations83
4.2 Reynolds stresses86
4.3 The mean scalar equation91
4.4 Gradient-diffusion and turbulent-viscosity hypotheses92
5 Free shear flows96
5.1 The round jet:experimental observations96
5.1.1 A description of the flow96
5.1.2 The mean velocity field97
5.1.3 Reynolds stresses105
5.2 The round jet:mean momentum111
5.2.1 Boundary-layer equations111
5.2.2 Flow rates of mass,momentum,and energy115
5.2.3 Self-similarity116
5.2.4 Uniform turbulent viscosity118
5.3 The round jet:kinetic energy122
5.4 Other self-similar flows134
5.4.1 The plane jet134
5.4.2 The plane mixing layer139
5.4.3 The plane wake147
5.4.4 The axisymmetric wake151
5.4.5 Homogeneous shear flow154
5.4.6 Grid turbulence158
5.5 Further observations161
5.5.1 A conserved scalar161
5.5.2 Intermittency167
5.5.3 PDFs and higher moments173
5.5.4 Large-scale turbulent motion178
6 The scales of turbulent motion182
6.1 The energy cascade and Kolmogorov hypotheses182
6.1.1 The energy cascade183
6.1.2 The Kolmogorov hypotheses184
6.1.3 The energy spectrum188
6.1.4 Restatement of the Kolmogorov hypotheses189
6.2 Structure functions191
6.3 Two-point correlation195
6.4 Fourier modes207
6.4.1 Fourier-series representation207
6.4.2 The evolution of Fourier modes211
6.4.3 The kinetic energy of Fourier modes215
6.5 Velocity spectra219
6.5.1 Definitions and properties220
6.5.2 Kolmogorov spectra229
6.5.3 A model spectrum232
6.5.4 Dissipation spectra234
6.5.5 The inertial subrange238
6.5.6 The energy-containing range240
6.5.7 Effects of the Reynolds number242
6.5.8 The shear-stress spectrum246
6.6 The spectral view of the energy cascade249
6.7 Limitations,shortcomings,and refinements254
6.7.1 The Reynolds number254
6.7.2 Higher-order statistics255
6.7.3 Internal intermittency258
6.7.4 Refined similarity hypotheses260
6.7.5 Closing remarks263
7 Wall flows264
7.1 Channel flow264
7.1.1 A description of the flow264
7.1.2 The balance of mean forces266
7.1.3 The near-wall shear stress268
7.1.4 Mean velocity profiles271
7.1.5 The friction law and the Reynolds number278
7.1.6 Reynolds stresses281
7.1.7 Lengthscales and the mixing length288
7.2 Pipe flow290
7.2.1 The friction law for smooth pipes290
7.2.2 Wall roughness295
7.3 Boundary layers298
7.3.1 A description of the flow299
7.3.2 Mean-momentum equations300
7.3.3 Mean velocity profiles302
7.3.4 The overlap region reconsidered308
7.3.5 Reynolds-stress balances313
7.3.6 Additional effects320
7.4 Turbulent structures322
PART TWO:MODELLING AND SIMULATION333
8 An introduction to modelling and simulation335
8.1 The challenge335
8.2 An overview of approaches336
8.3 Criteria for appraising models336
9 Direct numerical simulation344
9.1 Homogeneous turbulence344
9.1.1 Pseudo-spectral methods344
9.1.2 The computational cost346
9.1.3 Artificial modifications and incomplete resolution352
9.2 Inhomogeneous flows353
9.2.1 Channel flow353
9.2.2 Free shear flows354
9.2.3 Flow over a backward-facing step355
9.3 Discussion356
10 Turbulent-viscosity models358
10.1 The turbulent-viscosity hypothesis359
10.1.1 The intrinsic assumption359
10.1.2 The specific assumption364
10.2 Algebraic models365
10.2.1 Uniform turbulent viscosity365
10.2.2 The mixing-length model366
10.3 Turbulent-kinetic-energy models369
10.4 The κ-εmodel373
10.4.1 An overview373
10.4.2 The model equation for ε375
10.4.3 Discussion382
10.5 Further turbulent-viscosity models383
10.5.1 The κ-ω model383
10.5.2 The Spalart-Allmaras model385
11 Reynolds-stress and related models387
11.1 Introduction387
11.2 The pressure-rate-of-strain tensor388
11.3 Return-to-isotropy models392
11.3.1 Rotta's model392
11.3.2 The characterization of Reynolds-stress anisotropy393
11.3.3 Nonlinear return-to-isotropy models398
11.4 Rapid-distortion theory404
11.4.1 Rapid-distortion equations405
11.4.2 The evolution of a Fourier mode406
11.4.3 The evolution of the spectrum411
11.4.4 Rapid distortion of initially isotropic turbulence415
11.4.5 Final remarks421
11.5 Pressure-rate-of-strain models422
11.5.1 The basic model(LRR-IP)423
11.5.2 Other pressure-rate-of-strain models425
11.6 Extension to inhomogeneous flows428
11.6.1 Redistribution428
11.6.2 Reynolds-stress transport429
11.6.3 The dissipation equation432
11.7 Near-wall treatments433
11.7.1 Near-wall effects433
11.7.2 Turbulent viscosity434
11.7.3 Model equations for κ and ε435
11.7.4 The dissipation tensor436
11.7.5 Fluctuating pressure439
11.7.6 Wall functions442
11.8 Elliptic relaxation models445
11.9 Algebraic stress and nonlinear viscosity models448
11.9.1 Algebraic stress models448
11.9.2 Nonlinear turbulent viscosity452
11.10 Discussion457
12 PDF methods463
12.1 The Eulerian PDF of velocity464
12.1.1 Definitions and properties464
12.1.2 The PDF transport equation465
12.1.3 The PDF of the fluctuating velocity467
12.2 The model velocity PDF equation468
12.2.1 The generalized Langevin model469
12.2.2 The evolution of the PDF470
12.2.3 Corresponding Reynolds-stress models475
12.2.4 Eulerian and Lagrangian modelling approaches479
12.2.5 Relationships between Lagrangian and Eulerian PDFs480
12.3 Langevin equations483
12.3.1 Stationary isotropic turbulence484
12.3.2 The generalized Langevin model489
12.4 Turbulent dispersion494
12.5 The velocity-frequency joint PDF506
12.5.1 Complete PDF closure506
12.5.2 The log-normal model for the turbulence frequency507
12.5.3 The gamma-distribution model511
12.5.4 The model joint PDF equation514
12.6 The Lagrangian particle method516
12.6.1 Fluid and particle systems516
12.6.2 Corresponding equations519
12.6.3 Estimation of means523
12.6.4 Summary526
12.7 Extensions529
12.7.1 Wall functions529
12.7.2 The near-wall elliptic-relaxation model534
12.7.3 The wavevector model540
12.7.4 Mixing and reaction545
12.8 Discussion555
13 Large-eddy simulation558
13.1 Introduction558
13.2 Filtering561
13.2.1 The general definition561
13.2.2 Filtering in one dimension562
13.2.3 Spectral representation565
13.2.4 The filtered energy spectrum568
13.2.5 The resolution of filtered fields571
13.2.6 Filtering in three dimensions575
13.2.7 The filtered rate of strain578
13.3 Filtered conservation equations581
13.3.1 Conservation of momentum581
13.3.2 Decomposition of the residual stress582
13.3.3 Conservation of energy585
13.4 The Smagorinsky model587
13.4.1 The definition of the model587
13.4.2 Behavior in the inertial subrange587
13.4.3 The Smagorinsky filter590
13.4.4 Limiting behaviors594
13.4.5 Near-wall resolution598
13.4.6 Tests of model performance601
13.5 LES in wavenumber space604
13.5.1 Filtered equations604
13.5.2 Triad interactions606
13.5.3 The spectral energy balance609
13.5.4 The spectral eddy viscosity610
13.5.5 Backscatter611
13.5.6 A statistical view of LES612
13.5.7 Resolution and modelling615
13.6 Further residual-stress models619
13.6.1 The dynamic model619
13.6.2 Mixed models and variants627
13.6.3 Transport-equation models629
13.6.4 Implicit numerical filters631
13.6.5 Near-wall treatments634
13.7 Discussion635
13.7.1 An appraisal of LES635
13.7.2 Final perspectives638
PART THREE:APPENDICES641
Appendix A Cartesian tensors643
A.1 Cartesian coordinates and vectors643
A.2 The definition of Cartesian tensors647
A.3 Tensor operations649
A.4 The vector cross product654
A.5 A summary of Cartesian-tensor suffix notation659
Appendix B Properties of second-order tensors661
Appendix C Dirac delta functions670
C.1 The definition of δ(x)670
C.2 Properties of δ(x)672
C.3 Derivatives of δ(x)673
C.4 Taylor series675
C.5 The Heaviside function675
C.6 Multiple dimensions677
Appendix D Fourier transforms678
Appendix E Spectral representation of stationary random processes683
E.1 Fourier series683
E.2 Periodic random processes686
E.3 Non-periodic random processes689
E.4 Derivatives of the process690
Appendix F The discrete Fourier transform692
Appendix G Power-law spectra696
Appendix H Derivation of Eulerian PDF equations702
Appendix I Characteristic functions707
Appendix J Diffusion processes713
Bibliography727
Author index749
Subject index754
热门推荐
- 671058.html
- 2006442.html
- 2550948.html
- 2837982.html
- 3830012.html
- 2240064.html
- 909336.html
- 3566143.html
- 3857329.html
- 430029.html
- http://www.ickdjs.cc/book_2110076.html
- http://www.ickdjs.cc/book_3133686.html
- http://www.ickdjs.cc/book_2496589.html
- http://www.ickdjs.cc/book_1965801.html
- http://www.ickdjs.cc/book_3662221.html
- http://www.ickdjs.cc/book_1537812.html
- http://www.ickdjs.cc/book_789144.html
- http://www.ickdjs.cc/book_23774.html
- http://www.ickdjs.cc/book_751113.html
- http://www.ickdjs.cc/book_2767927.html