图书介绍
计算机与机器视觉理论、算法与实践 英文版 第4版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (英)戴维斯著 著
- 出版社: 北京:机械工业出版社
- ISBN:9787111412328
- 出版时间:2013
- 标注页数:871页
- 文件大小:202MB
- 文件页数:907页
- 主题词:计算机视觉-英文
PDF下载
下载说明
计算机与机器视觉理论、算法与实践 英文版 第4版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Vision,the Challenge1
1.1 Introduction―Man and His Senses1
1.2 The Nature of Vision2
1.2.1 The Process of Recognition2
1.2.2 Tackling the Recognition Problem4
1.2.3 Object Location6
1.2.4 Scene Analysis8
1.2.5 Vision as Inverse Graphics9
1.3 From Automated Visual Inspection to Surveillance10
1.4 What This Book is About12
1.5 The Following Chapters13
1.6 Bibliographical Notes14
PART 1 LOW-LEVEL VISION15
CHAPTER 2 Images and Imaging Operations17
2.1 Introduction18
2.1.1 Gray Scale Versus Color19
2.2 Image Processing Operations23
2.2.1 Some Basic Operations on Grayscale Images24
2.2.2 Basic Operations on Binary Images28
2.3 Convolutions and Point Spread Functions32
2.4 Sequential Versus Parallel Operations34
2.5 Concluding Remarks36
2.6 Bibliographical and Historical Notes36
2.7 Problems36
CHAPTER 3 Basic Image Filtering Operations38
3.1 Introduction38
3.2 Noise Suppression by Gaussian Smoothing40
3.3 Median Filters43
3.4 Mode Filters45
3.5 Rank Order Filters52
3.6 Reducing Computational Load54
3.7 Sharp-Unsharp Masking55
3.8 Shifts Introduced by Median Filters56
3.8.1 Continuum Model of Median Shifts57
3.8.2 Generalization to Grayscale Images59
3.8.3 Problems with Statistics60
3.9 Discrete Model of Median Shifts62
3.10 Shifts Introduced by Mode Filters65
3.11 Shifts Introduced by Mean and Gaussian Filters67
3.12 Shifts Introduced by Rank Order Filters68
3.12.1 Shifts in Rectangular Neighborhoods69
3.13 The Role of Filters in Industrial Applications of Vision74
3.14 Color in Image Filtering74
3.15 Concluding Remarks76
3.16 Bibliographical and Historical Notes77
3.16.1 More Recent Developments78
3.17 Problems79
CHAPTER 4 Thresholding Techniques82
4.1 Introduction83
4.2 Region-Growing Methods83
4.3 Thresholding84
4.3.1 Finding a Suitable Threshold85
4.3.2 Tackling the Problem of Bias in Threshold Selection86
4.3.3 Summary88
4.4 Adaptive Thresholding88
4.4.1 The Chow and Kaneko Approach91
4.4.2 Local Thresholding Methods92
4.5 More Thoroughgoing Approaches to Threshold Selection93
4.5.1 Variance-Based Thresholding95
4.5.2 Entropy-Based Thresholding96
4.5.3 Maximum Likelihood Thresholding97
4.6 The Global Valley Approach to Thresholding98
4.7 Practical Results Obtained Using the Global ValleyMethod101
4.8 Histogram Concavity Analysis106
4.9 Concluding Remarks107
4.10 Bibliographical and Historical Notes108
4.10.1 More Recent Developments109
4.11 Problems110
CHAPTER 5 Edge Detection111
5.1 Introduction112
5.2 Basic Theory of Edge Detection113
5.3 The Template Matching Approach115
5.4 Theory of 3×3 Template Operators116
5.5 The Design of Differential Gradient Operators117
5.6 The Concept of a Circular Operator118
5.7 Detailed Implementation of Circular Operators120
5.8 The Systematic Design of Differential Edge Operators122
5.9 Problems with the Above Approach―Some Alternative Schemes123
5.10 Hysteresis Thresholding126
5.11 The Canny Operator128
5.12 The Laplacian Operator131
5.13 Active Contours134
5.14 Practical Results Obtained Using Active Contours137
5.15 The Level Set Approach to Object Segmentation140
5.16 The Graph Cut Approach to Object Segmentation141
5.17 Concluding Remarks145
5.18 Bibliographical and Historical Notes146
5.18.1 More Recent Developments147
5.19 Problems148
CHAPTER 6 Corner and Interest Point Detection149
6.1 Introduction150
6.2 Template Matching150
6.3 Second-Order Derivative Schemes151
6.4 A Median Filter-Based Corner Detector153
6.4.1 Analyzing the Operation of the Median Detector154
6.4.2 Practical Results156
6.5 The Harris Interest Point Operator158
6.5.1 Corner Signals and Shifts for Various Geometric Configurations161
6.5.2 Performance with Crossing Points and Junctions162
6.5.3 Different Forms of the Harris Operator165
6.6 Corner Orientation166
6.7 Local Invariant Feature Detectors and Descriptors168
6.7.1 Harris Scale and Affine-Invariant Detectors and Descriptors171
6.7.2 Hessian Scale and Affine-Invariant Detectors and Descriptors173
6.7.3 The SIFT Operator173
6.7.4 The SURF Operator174
6.7.5 Maximally Stable Extremal Regions176
6.7.6 Comparison of the Various Invariant Feature Detectors177
6.8 Concluding Remarks180
6.9 Bibliographical and Historical Notes181
6.9.1 More Recent Developments184
6.10 Problems184
CHAPTER 7 Mathematical Morphology185
7.1 Introduction185
7.2 Dilation and Erosion in Binary Images186
7.2.1 Dilation and Erosion186
7.2.2 Cancellation Effects186
7.2.3 Modified Dilation and Erosion Operators187
7.3 Mathematical Morphology187
7.3.1 Generalized Morphological Dilation187
7.3.2 Generalized Morphological Erosion188
7.3.3 Duality Between Dilation and Erosion189
7.3.4 Properties of Dilation and Erosion Operators190
7.3.5 Closing and Opening193
7.3.6 Summary of Basic Morphological Operations195
7.4 Grayscale Processing197
7.4.1 Morphological Edge Enhancement198
7.4.2 Further Remarks on the Generalization to Grayscale Processing199
7.5 Effect of Noise on Morphological Grouping Operations201
7.5.1 Detailed Analysis203
7.5.2 Discussion205
7.6 Concluding Remarks205
7.7 Bibliographical and Historical Notes206
7.7.1 More Recent Developments207
7.8 Problem208
CHAPTER 8 Texture209
8.1 Introduction209
8.2 Some Basic Approaches to Texture Analysis213
8.3 Graylevel Co-occurrence Matrices213
8.4 Laws'Texture Energy Approach217
8.5 Ade's Eigenfilter Approach220
8.6 Appraisal of the Laws and Ade Approaches221
8.7 Concluding Remarks223
8.8 Bibliographical and Historical Notes223
8.8.1 More Recent Developments224
PART 2 INTERMEDIATE-LEVEL VISION227
CHAPTER 9 Binary Shape Analysis229
9.1 Introduction230
9.2 Connectedness in Binary Images230
9.3 Object Labeling and Counting231
9.3.1 Solving the Labeling Problem in a More Complex Case235
9.4 Size Filtering238
9.5 Distance Functions and Their Uses240
9.5.1 Local Maxima and Data Compression243
9.6 Skeletons and Thinning244
9.6.1 Crossing Number247
9.6.2 Parallel and Sequential Implementations of Thinning248
9.6.3 Guided Thinning251
9.6.4 A Comment on the Nature of the Skeleton251
9.6.5 Skeleton Node Analysis251
9.6.6 Application of Skeletons for Shape Recognition253
9.7 Other Measures for Shape Recognition254
9.8 Boundary Tracking Procedures257
9.9 Concluding Remarks257
9.10 Bibliographical and Historical Notes259
9.10.1 More Recent Developments260
9.11 Problems261
CHAPTER 10 Boundary Pattern Analysis266
10.1 Introduction266
10.2 Boundary Tracking Procedures269
10.3 Centroidal Profiles269
10.4 Problems with the Centroidal Profile Approach270
10.4.1 Some Solutions271
10.5 The(s,ψ)Plot274
10.6 Tackling the Problems of Occlusion276
10.7 Accuracy of Boundary Length Measures279
10.8 Concluding Remarks280
10.9 Bibliographical and Historical Notes281
10.9.1 More Recent Developments282
10.10 Problems282
CHAPTER 11 Line Detection284
11.1 Introduction284
11.2 Application of the Hough Transform to Line Detection285
11.3 The Foot-of-Normal Method288
11.3.1 Application of the Foot-of-Normal Method290
11.4 Longitudinal Line Localization290
11.5 Final Line Fitting292
11.6 Using RANSAC for Straight Line Detection293
11.7 Location of Laparoscopic Tools297
11.8 Concluding Remarks299
11.9 Bibliographical and Historical Notes300
11.9.1 More Recent Developments301
11.10 Problems301
CHAPTER 12 Circle and Ellipse Detection303
12.1 Introduction304
12.2 Hough-Based Schemes for Circular Object Detection305
12.3 The Problem of Unknown Circle Radius308
12.3.1 Some Practical Results310
12.4 The Problem ofAccurate Center Location311
12.4.1 A Solution Requiring Minimal Computation313
12.5 Overcoming the Speed Problem314
12.5.1 More Detailed Estimates of Speed314
12.5.2 Robustness315
12.5.3 Practical Results316
12.5.4 Summary317
12.6 Ellipse Detection320
12.6.1 The Diameter Bisection Method320
12.6.2 The Chord-Tangent Method322
12.6.3 Finding the Remaining Ellipse Parameters323
12.7 Human Iris Location325
12.8 Hole Detection327
12.9 Concluding Remarks327
12.10 Bibliographical and Historical Notes328
12.10.1 More Recent Developments330
12.11 Problems331
CHAPTER 13 The Hough Transform and Its Nature333
13.1 Introduction333
13.2 The Generalized Hough Transform334
13.3 Setting Up the Generalized Hough Transform—Some Relevant Questions336
13.4 Spatial Matched Filtering in Images336
13.5 From Spatial Matched Filters to Generalized Hough Transforms337
13.6 Gradient Weighting Versus Uniform Weighting339
13.6.1 Calculation of Sensitivity and Computational Load339
13.7 Summary342
13.8 Use of the GHT for Ellipse Detection343
13.8.1 Practical Details347
13.9 Comparing the Various Methods349
13.10 Fast Implementations of the Hough Transform350
13.11 The Approach of Gerig and Klein352
13.12 Concluding Remarks353
13.13 Bibliographical and Historical Notes354
13.13.1 More Recent Developments356
13.14 Problems357
CHAPTER 14 Pattern Matching Techniques358
14.1 Introduction359
14.2 A Graph-Theoretic Approach to Object Location359
14.2.1 A Practical Example―Locating Cream Biscuits363
14.3 Possibilities for Saving Computation366
14.4 Using the Generalized Hough Transform for Feature Collation369
14.4.1 Computational Load370
14.5 Generalizing the Maximal Clique and Other Approaches371
14.6 Relational Descriptors373
14.7 Search376
14.8 Concluding Remarks377
14.9 Bibliographical and Historical Notes378
14.9.1 More Recent Developments380
14.10 Problems381
PART 3 3-D VISION AND MOTION387
CHAPTER 15 The Three-Dimensional World389
15.1 Introduction389
15.2 3-D Vision—the Variety of Methods390
15.3 Projection Schemes for Three-Dimensional Vision392
15.3.1 Binocular Images393
15.3.2 The Correspondence Problem396
15.4 Shape from Shading398
15.5 Photometric Stereo402
15.6 The Assumption of Surface Smoothness405
15.7 Shape from Texture407
15.8 Use of Structured Lighting408
15.9 Three-Dimensional Object Recognition Schemes410
15.10 Horaud's Junction Orientation Technique411
15.11 An Important Paradigm―Location of Industrial Parts415
15.12 Concluding Remarks417
15.13 Bibliographical and Historical Notes419
15.13.1 More Recent Developments420
15.14 Problems421
CHAPTER 16 Tackling the Perspective n-point Problem424
16.1 Introduction424
16.2 The Phenomenon of Perspective Inversion425
16.3 Ambiguity of Pose under Weak Perspective Projection427
16.4 Obtaining Unique Solutions to the Pose Problem430
16.4.1 Solution of the Three-Point Problem433
16.4.2 Using Symmetric Trapezia for Estimating Pose434
16.5 Concluding Remarks434
16.6 Bibliographical and Historical Notes436
16.6.1 More Recent Developments437
16.7 Problems438
CHAPTER 17 Invariants and Perspective439
17.1 Introduction440
17.2 Cross-ratios:the“Ratio of Ratios”Concept441
17.3 Invariants for Noncollinear Points445
17.3.1 Further Remarks About the Five-Point Configuration447
17.4 Invariants for Points on Conics449
17.5 Differential and Semi-difierential Invariants452
17.6 Symmetric Cross-ratio Functions454
17.7 Vanishing Point Detection456
17.8 More on Vanishing Points458
17.9 Apparent Centers of Circles and Ellipses460
17.10 The Route to Face Recognition462
17.10.1 The Face as Part of a 3-D Object464
17.11 Perspective Effects in Art and Photography466
17.12 Concluding Remarks472
17.13 Bibliographical and Historical Notes474
17.13.1 More Recent Developments475
17.14 Problems475
CHAPTER 18 Image Transformations and Camera Calibration478
18.1 Introduction479
18.2 Image Transformations479
18.3 Camera Calibration483
18.4 Intfinsic and Extrinsic Parameters486
18.5 Correcting for Radial Distortions488
18.6 Multiple View Vision490
18.7 Generalized Epipolar Geometry491
18.8 The Essential Matrix492
18.9 The Fundamental Matrix495
18.10 Properties of the Essential and Fundamental Matrices496
18.11 Estimating the Fundamental Matrix497
18.12 An Update on the Eight-Point Algorithm497
18.13 Image Rectification498
18.14 3-D Reconstruction499
18.15 Concluding Remarks501
18.16 Bibliographical and Historical Notes502
18.16.1 More Recent Developments503
18.17 Problems504
CHAPTER 19 Motion505
19.1 Introduction505
19.2 Optical Flow506
19.3 Interpretation of Optical Flow Fields509
19.4 Using Focus of Expansion to Avoid Collision511
19.5 Time-to-Adjacency Analysis513
19.6 Basic Difficulties with the Optical Flow Model514
19.7 Stereo from Motion515
19.8 The Kalman Filter517
19.9 Wide Baseline Matching519
19.10 Concluding Remarks521
19.11 Bibliographical and Historical Notes522
19.12 Problem522
PART 4 TOWARD REAL-TIME PATTERN RECOGN ITION SYSTEMS523
CHAPTER 20 Automated Visual Inspection525
20.1 Introduction525
20.2 The Process of Inspection527
20.3 The Types of Object to be Inspected527
20.3.1 Food Products528
20.3.2 Precision Components528
20.3.3 Differing Requirements for Size Measurement529
20.3.4 Three-Dimensional Objects530
20.3.5 Other Products and Materials for Inspection530
20.4 Summary:The Main Categories of Inspection530
20.5 Shape Deviations Relative to a Standard Template532
20.6 Inspection of Circular Products533
20.7 Inspection of Printed Circuits537
20.8 Steel Strip and Wood Inspection538
20.9 Inspection of Products with High Levels of Variability539
20.10 X-Ray Inspection542
20.10.1 The Dual-Energy Approach to X-Ray Inspection546
20.11 The Importance of Color in Inspection546
20.12 Bringing Inspection to the Factory548
20.13 Concluding Remarks549
20.14 Bibliographical and Historical Notes550
20.14.1 More Recent Developments552
CHAPTER 21 Inspection of Cereal Grains553
21.1 Introduction553
21.2 Case Study:Location of Dark Contaminants in Cereals554
21.2.1 Application of Morphological and Nonlinear Filters to Locate Rodent Droppings555
21.2.2 Problems with Closing558
21.2.3 Ergot Detection Using the Global Valley Method558
21.3 Case Study:Location of Insects560
21.3.1 The Vectorial Strategy for Linear Feature Detection560
21.3.2 Designing Linear Feature Detection Masks for Larger Windows563
21.3.3 Application to Cereal Inspection564
21.3.4 Experimental Resuits564
21.4 Case Study:High-Speed Grain Location566
21.4.1 Extending an Earlier Sampling Approach566
21.4.2 Application to Grain Inspection567
21.4.3 Summary571
21.5 Optimizing the Output for Sets of Directional Template Masks572
21.5.1 Application of the Formulae573
21.5.2 Discussion574
21.6 Concluding Remarks575
21.7 Bibliographical and Historical Notes575
21.7.1 More Recent Developments576
CHAPTER 22 Surveillance578
22.1 Introduction579
22.2 Surveillance—The Basic Geometry580
22.3 Foreground―Background Separation584
22.3.1 Background Modeling585
22.3.2 Practical Examples of Background Modeling591
22.3.3 Direct Detection of the Foreground593
22.4 Particle Filters594
22.5 Use of Color Histograms for Tracking600
22.6 Implementation of Particle Filters604
22.7 Chamfer Matching,Tracking,and Occlusion607
22.8 Combining Views from Multiple Cameras609
22.8.1 The Case of Nonoverlapping Fields of View613
22.9 Applications to the Monitoring of Traffic Flow614
22.9.1 The System of Bascle et al614
22.9.2 The System of Koller et al616
22.10 License Plate Location619
22.11 Occlusion Classification for Tracking621
22.12 Distinguishing Pedestrians by Their Gait623
22.13 Human Gait Analysis627
22.14 Model-Based Tracking of Animals629
22.15 Concluding Remarks631
22.16 Bibliographical and Historical Notes632
22.16.1 More Recent Developments634
22.17 Problem635
CHAPTER 23 In-Vehicle Vision Systems636
23.1 Introduction637
23.2 Locating the Roadway638
23.3 Location of Road Markings640
23.4 Location of Road Signs641
23.5 Location of Vehicles645
23.6 Information Obtained by Viewing License Plates and Other Structural Features647
23.7 Locating Pedestrians651
23.8 Guidance and Egomotion653
23.8.1 A Simple Path Planning Algorithm656
23.9 Vehicle Guidance in Agriculture656
23.9.1 3-D Aspects of the Task660
23.9.2 Real-Time Implementation661
23.10 Concluding Remarks662
23.11 More Detailed Developments and Bibliographies Relating to Advanced Driver Assistance Systems663
23.11.1 Developments in Vehicle Detection664
23.11.2 Developments in Pedestrian Detection666
23.11.3 Developments in Road and Lane Detection668
23.11.4 Developments in Road Sign Detection669
23.11.5 Developments in Path Planning,Navigation, and Egomotion671
23.12 Problem671
CHAPTER 24 Statistical Pattern Recognition672
24.1 Introduction673
24.2 The Nearest Neighbor Algorithm674
24.3 Bayes'Decision Theory676
24.3.1 The Naive Bayes'Classifier678
24.4 Relation of the Nearest Neighbor and Bayes' Approaches679
24.4.1 Mathematical Statement of the Problem679
24.4.2 The Importance of the Nearest Neighbor Classifier681
24.5 The Optimum Number of Features681
24.6 Cost Functions and Error-Reject Tradeoff682
24.7 The Receiver Operating Characteristic684
24.7.1 On the Variety of Performance Measures Relating to Error Rates686
24.8 Multiple Classifiers688
24.9 Cluster Analysis691
24.9.1 Supervised and Unsupervised Learning691
24.9.2 Clustering Procedures692
24.10 Principal Components Analysis695
24.11 The Relevance of Probability in Image Analysis699
24.12 Another Look at Statistical Pattern Recognition:The Support Vector Machine700
24.13 Artificial Neural Networks701
24.14 The Back-Propagation Algorithm705
24.15 MLP Architectures708
24.16 Overfitting to the Training Data709
24.17 Concluding Remarks712
24.18 Bibliographical and Historical Notes713
24.18.1 More Recent Developments715
24.19 Problems717
CHAPTER 25 Image Acquisition718
25.1 Introduction718
25.2 Illumination Schemes719
25.2.1 Eliminating Shadows721
25.2.2 Principles for Producing Regions of Uniform Illumination724
25.2.3 Case of Two Infinite Parallel Strip Lights726
25.2.4 Overview of the Uniform Illumination Scenario729
25.2.5 Use of Line-Scan Cameras730
25.2.6 Light Emitting Diode(LED)Sources731
25.3 Cameras and Digitization732
25.3.1 Digitization734
25.4 The Sampling Theorem735
25.5 Hyperspectral Imaging738
25.6 Concluding Remarks739
25.7 Bibliographical and Historical Notes740
25.7.1 More Recent Developments741
CHAPTER 26 Real-Time Hardware and Systems Design Considerations742
26.1 Introduction743
26.2 Parallel Processing744
26.3 SIMD Systems745
26.4 The Gain in Speed Attainable with N Processors747
26.5 Flynn's Classification748
26.6 Optimal Implementation of Image Analysis Algorithms750
26.6.1 Hardware Specification and Design751
26.6.2 Basic Ideas on Optimal Hardware Implementation752
26.7 Some Useful Real-Time Hardware Options754
26.8 Systems Design Considerations755
26.9 Design of Inspection Systems―the Status Quo757
26.10 System Optimization760
26.11 Concluding Remarks761
26.12 Bibliographical and Historical Notes763
26.12.1 General Background763
26.12.2 Developments Since 2000764
26.12.3 More Recent Developments765
CHAPTER 27 Epilogue―Perspectivesin Vision767
27.1 Introduction767
27.2 Parameters of Importance in Machine Vision768
27.3 Tradeoffs770
27.3.1 Some Important Tradeoffs770
27.3.2 Tradeoffs for Two-Stage Template Matching771
27.4 Moore's Law in Action772
27.5 Hardware,Algorithms,and Processes773
27.6 The Importance of Choice of Representation774
27.7 Past,Present,and Future775
27.8 Bibliographical and Historical Notes777
Appendix A Robust Statistics778
References796
Author Index845
Subject Index861
热门推荐
- 1810949.html
- 2516248.html
- 1292254.html
- 1228856.html
- 3517880.html
- 3398069.html
- 191107.html
- 2159490.html
- 3226014.html
- 299401.html
- http://www.ickdjs.cc/book_3578472.html
- http://www.ickdjs.cc/book_3199716.html
- http://www.ickdjs.cc/book_3306050.html
- http://www.ickdjs.cc/book_1942427.html
- http://www.ickdjs.cc/book_397482.html
- http://www.ickdjs.cc/book_644519.html
- http://www.ickdjs.cc/book_1871016.html
- http://www.ickdjs.cc/book_585265.html
- http://www.ickdjs.cc/book_2127072.html
- http://www.ickdjs.cc/book_1286977.html