图书介绍
STATISICS IN CRIMINOLOGY AND CRIMINAL JUSTICE ANALYSIS AND INTERPRETATION2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- JEFFERY T.WALLKER PHD SEN MADDAN 著
- 出版社: JONES AND BARTLETT PUBLISHERS
- ISBN:0763755486
- 出版时间:2009
- 标注页数:498页
- 文件大小:116MB
- 文件页数:510页
- 主题词:
PDF下载
下载说明
STATISICS IN CRIMINOLOGY AND CRIMINAL JUSTICE ANALYSIS AND INTERPRETATIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 The Logic of Comparisons and Analysis2
Introduction: WhyAnalyze Data?3
Some Statistical History3
Uses of Statistics4
Theory Construction at a Glance5
What Is Theory?5
Theoryand Research5
The Process of Scientific Inquiry6
Observation and Inquisitiveness6
Primary Questions8
Research Questions8
Research: Movement from Theory to Data and Back8
Formulating Hypotheses9
Constructing the Research Design10
Conceptualization10
Operationalization11
Gathering the Data12
Statistical Analysis: The Art of Making Comparisons14
Foundations of Valid Comparisons14
Comparing Appropriate Phenomena15
Using Comparable Measures15
Choosing Analysis Methods That Best Summarize the Data16
Drawing Conclusions16
Communicating the Results17
Data and Purposes of This Book17
Key Terms19
Exercises20
References20
For Further Reading21
Notes21
2 Variables and Measurement22
The Variable Defined23
Transforming Characteristics into Data: The Process of Measurement23
How Variables Can Differ25
Levels of Measurement26
Scale Continuity36
Use in the Research Process37
Conclusions40
Key Terms40
Exercises40
References44
For Further Reading45
Notes45
3 Understanding Data Through Organization46
Frequency Distributions: A Chart of a Different Color49
Conventions for Building Distributions49
Frequency Distributions52
Percentage Distributions54
Combination Distributions56
Graphical Representation of Frequencies56
Pie Charts56
Histograms and Bar Charts57
Polygons and Area Charts61
Analyzing Univariate Statistics62
Analyzing Change64
Line Charts64
Ogives64
Analyzing Bivariate and Multivariate Data65
Scatter Plots65
Normal Probability Plots67
Path Diagrams68
Analyzing Geographic Distributions69
Pin, Spot, or Point Maps69
Choropleth Maps70
Conclusion74
Key Terms75
Exercises75
References77
Notes77
4 Measures of CentralTendency78
Univariate Descriptive Statistics79
Measures of Central Tendency79
Mode80
Median85
Mean90
Selecting the Most Appropriate Measure of Central Tendency92
Conclusion94
Key Terms95
Summary of Equations95
Exercises96
References100
Notes101
5 Measuresof Dispersion102
Deviation and Dispersion103
Measures of Dispersion105
Range105
Index of Dispersion108
Mean Absolute Deviation110
Variance111
Standard Deviation116
Uses for the Variance and Standard Deviation117
Selecting the Most Appropriate Measure of Dispersion117
Conclusion117
Key Terms118
Summaryof Equations118
Exercises118
References123
For Further Reading123
Note123
6 The Form of a Distribution124
Momentsof a Distribution125
Number of Modes125
Skewness126
Analysis of Skew127
Kurtosis129
Analysis of Kurtosis129
The Importance of Skew and Kurtosis129
Design of the Normal Curve130
Points to Remember About the Normal Curve135
Conclusion136
Key Terms136
Summary0fEquati0ns136
Exercises136
References141
For Further Reading141
Note141
7 Introduction to Bivariate Descriptive Statistics142
Bivariate Tables and Analysis143
Statistical Tables versus Presentation Tables145
Constructing BivariateTables147
Ordinal Level Table Construction148
Nominal LevelTable Construction152
Analysis of BivariateTables152
Conclusion153
Key Terms153
Exercises153
Notes155
8 Measures of Existence and Statistical Significance156
Nominal Level Measures of Existence157
Tables, Percentages, and Differences158
Chi-Square162
Requirements for Using Chi-Square170
Limitations of Chi-Square172
FinalNote on Chi-Square173
Tests of Existence for Ordinal and Interval Level Data173
Calculation and Interpretation for Ordinal Data174
Spearman's Rho and Pearson's r174
An Issue of Significance179
Conclusion179
Key Terms180
Summary of Equations180
Exercises180
References188
For Further Reading188
Notes188
9 Measures of Strength of a Relationship190
What Is Association?191
Nominal Level Data195
Ordinal Level Data199
Tau204
Gamma212
Somers' d214
Spearman's Rho216
Interval Level Data220
Pearson's r221
Conclusion: Selecting the Most Appropriate Measure of Strength228
Key Terms229
Summary of Equations229
Exercises230
References236
Note237
10 Measures of Direction and Nature of a Relationship239
Direction of the Association239
Establishing Direction for Ordinal Level Data239
Establishing Direction for Interval and Ratio Level Data242
Nature of the Association244
Establishing the Nature of the Distribution for Nominal and Ordinal Level Data244
Establishing the Nature of the Distribution for Interval and Ratio Level Data247
Conclusions248
Key Terms249
Exercises249
11 Introduction to Multivariate Statistics254
When Two Variables Just Aren't Enough255
Interaction Among Variables255
Causation258
Association258
Temporal Ordering259
Elimination of Confounding Variables261
Additional Concepts in Multivariate Analysis262
Robustness262
Error263
Parsimony264
Conclusion265
Key Terms265
Summaryof Equations265
Exercises265
References266
Note267
12 Multiple Regression I: Ordinary Least Squares Regression269
Regression269
Assumptions271
Analysis and Interpretation274
Steps in OLS Regression Analysis278
Other OLS Regression Information283
Limitations of OLS Regression283
Independent Variables with Lower Levels of Measurement and Nonlinear Relationships283
Dummy Variables284
Interaction Terms285
Nonlinear Relationships and Transformations287
Parabolic Functions287
Logarithmic Functions291
Multicollinearity292
Assessing Multicollinearity293
Adjusting for Multicollinearity295
Conclusion295
Key Terms296
Key Formulas296
Exercises297
References298
For Further Reading299
Notes299
13 Multiple Regression Ⅱ: Limited Dependent Variables301
Dealing with Limited Dependent Variables301
OLS Assumptions That Are Violated by Dichotomous Variables302
Logistic Regression305
Interpreting Logit Results306
Interactive Effects and Other Types of Logit313
Criticisms of Logistic Regression315
P0iss0n and Negative Binomial Regression316
A Note About Dispersion in Poisson and Negative Binomial Regression317
Interpreting Poisson and Negative Binomial Regression317
Criticisms of Poisson and Negative Binomial Models320
Other Multiple Regression Techniques320
Probit Regression320
Tobit Regression321
Multicollinearity and Alternative Regression Techniques321
Conclusion322
Key Terms322
Exercises322
References323
14 Factor Analysis and Structural Equation Modeling325
Introduction325
Factor Analysis325
Assumptions327
Analysis and Interpretation328
Structural Equation Modeling341
Variables in Structural Equation Modeling342
SEM Assumptions342
Advantages of SEM342
SEM Analysis344
Conclusion348
Key Terms348
Key Equations349
Questions and Exercises349
References349
15 Introduction to Inferential Analysis352
Terminology and Assumptions354
Normal Curve355
Probability357
Sampling359
Probability Sampling360
Nonprobability Sampling363
Sampling Distributions364
Central Limit Theorem366
Confidence Intervals367
Calculating Confidence Intervals367
Interpreting Confidence Intervals369
Conclusion370
Key Words370
Summary of Equations371
Exercises371
References371
16 Hypothesis Testing372
Null and Research Hypotheses374
Steps in Hypothesis Testing375
Type I and Type Ⅱl Errors380
Which Is Better, Type Ⅰ or Type Ⅱ Error?382
Power of Tests383
Conclusion385
Key Terms385
Summary of Equations385
Exercises385
References386
For Further Reading387
17 HypothesisTests389
ZTest389
Calculation and Example390
Interpretation and Application: Known Probability of Error392
One- versus Two-Sample ZTests396
t-test396
Assumptions of a t-test397
Calculation and Example398
SPSS Analysis for Ztests and t-tests400
Chi-squareTest forlndependence406
Conclusion407
Key Terms407
Summary of Equations407
Exercises408
References409
Note409
18 Analysis of Variance (ANOVA)411
ANOVA411
Assumptions412
Calculation and Interpretation413
Post HocTests418
Conclusion420
Key Terms420
Summary of Equations420
Exercises420
References421
For Further Reading421
Notes421
19 Putting It All Together423
The Relationship Between Statistics, Methodology, and Theory423
Describe It or Make Inferences424
Abuses of Statistics426
When You Are On Your Own427
Conclusion428
References429
Notes429
AppendixA Math Review and Practice Test431
AppendixB StatisticalTables435
AppendixC The GreekAlphabet441
AppendixD Variables in Data Sets443
Index477
热门推荐
- 3557567.html
- 3175218.html
- 3372306.html
- 465232.html
- 340620.html
- 1171568.html
- 1360097.html
- 1824245.html
- 84365.html
- 3004865.html
- http://www.ickdjs.cc/book_137345.html
- http://www.ickdjs.cc/book_3736858.html
- http://www.ickdjs.cc/book_916242.html
- http://www.ickdjs.cc/book_3528844.html
- http://www.ickdjs.cc/book_1181540.html
- http://www.ickdjs.cc/book_1228128.html
- http://www.ickdjs.cc/book_1553381.html
- http://www.ickdjs.cc/book_3685223.html
- http://www.ickdjs.cc/book_3130844.html
- http://www.ickdjs.cc/book_883311.html