图书介绍
量子群入门 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (美)沙里著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510005770
- 出版时间:2010
- 标注页数:651页
- 文件大小:24MB
- 文件页数:664页
- 主题词:量子群-英文
PDF下载
下载说明
量子群入门 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Introduction1
1 Poisson-Lie groups and Lie bialgebras15
1.1 Poisson manifolds16
A Definitions16
B Functorial properties18
C Symplectic leaves18
1.2 Poisson-Lie groups21
A Definitions21
B Poisson homogeneous spaces22
1.3 Lie bialgebras24
A The Lie bialgebra of a Poisson-Lie group24
B Manin triples26
C Examples28
D Derivations32
1.4 Duals and doubles33
A Duals of Lie bialgebras and Poisson-Lie groups33
B The classical double34
C Compact Poisson-Lie groups35
1.5 Dressing actions and symplectic leaves36
A Poisson actions36
B Dressing transformations and symplectic leaves37
C Symplectic leaves in compact Poisson-Lie groups39
D The twisted case41
1.6 Deformation of Poisson structures and quantization43
A Deformations of Poisson algebras43
B Weyl quantization44
C Quantization as deformation46
Bibliographical notes48
2 Coboundary Poisson-Lie groups and the classical Yang-Baxter equation50
2.1 Coboundary Lie bialgebras50
A Defnitions50
B The classical Yang-Baxter equation54
C Examples55
D The classical double58
2.2 Coboundary Poisson-Lie groups59
A The Sklyanin bracket60
B r-matrices and 2-cocycles62
C The classical R-matrix67
2.3 Classical integrable systems68
A Complete integrability68
B Lax pairs69
C Integrable systems from r-matrices71
D Toda systems75
Bibliographical notes77
3 Solutions of the classical Yang-Baxter equation79
3.1 Constant solutions of the CYBE80
A The parameter space of non-skew solutions80
B Description of the solutions81
C Examples82
D Skew solutions and quasi-Frobenius Lie algebras84
3.2 Solutions of the CYBE with spectral parameters87
A Classification of the solutions87
B Elliptic solutions90
C Trigonometric solutions91
D Rational solutions95
Bibliographical notes98
4 Quasitriangular Hopf algebras100
4.1 Hopf algebras101
A Definitions101
B Examples105
C Representations of Hopf algebras108
D Topological Hopf algebras and duality111
E Integration on Hopf algebras115
F Hopf *-algebras117
4.2 Quasitriangular Hopf algebras119
A Almost cocommutative Hopf algebras119
B Quasitriangular Hopf algebras123
C Ribbon Hopf algebras and quantum dimension125
D The quantum double127
E Twisting129
F Sweedler's example131
Bibliographical notes133
5 Representations and quasitensor categories135
5.1 Monoidal categories136
A Abelian categories136
B Monoidal categories138
C Rigidity139
D Examples140
E Reconstruction theorems147
5.2 Quasitensor categories149
A Tensor categories149
B Quasitensor categories152
C Balancing154
D Quasitensor categories and fusion rules154
E Quasitensor categories in quantum field theory157
5.3 Invariants of ribbon tangles161
A Isotopy invariants and monoidal functors161
B Tangle invariants166
C Central elements168
Bibliographical notes168
6 Quantization of Lie bialgebras170
6.1 Deformations of Hopf algebras171
A Definitions171
B Cohomology theory173
C Rigidity theorems176
6.2 Quantization177
A (Co-)Poisson Hopf algebras177
B Quantization179
C Existence of quantizations182
6.3 Quantized universal enveloping algebras187
A Cocommutative QUE algebras187
B Quasitriangular QUE algebras188
C QUE duals and doubles189
D The square of the antipode190
6.4 The basic example192
A Construction of the standard quantization192
B Algebra structure196
C PBW basis199
D Quasitriangular structure200
E Representations203
F A non-standard quantization206
6.5 Quantum Kac-Moody algebras207
A The standard quantization207
B The centre212
C Multiparameter quantizations212
Bibliographical notes213
7 Quantized function algebras215
7.1 The basic example216
A Definition216
B A basis of Fh(SL2(?))220
C The R-matrix formulation222
D Duality223
E Representations227
7.2 R-matrix quantization228
A From R-matrices to bialgebras228
B From bialgebras to Hopf algebras:the quantum determinant231
C Solutions of the QYBE233
7.3 Examples of quantized function algebras234
A The general definition234
B The quantum special linear group235
C The quantum orthogonal and symplectic groups236
D Multiparameter quantized function algebras238
7.4 Differential calculus on quantum groups240
A The de Rham complex of the quantum plane240
B The de Rham complex of the quantum m×m matrices242
C The de Rham complex of the quantum general linear group244
D Invariant forms on quantum GLm245
7.5 Integrable lattice models246
A Vertex models246
B Transfer matrices248
C Integrability249
D Examples251
Bibliographical notes253
8 Structure of QUE algebras:the universal R-matrix255
8.1 The braid group action256
A The braid group256
B Root vectors and the PBW basis258
8.2 The quantum Weyl group262
A The sl2 case262
B The relation with the universal R-matrix263
C The general case265
8.3 The quasitriangular structure266
A The quantum double construction266
B The sl2 case267
C The general case271
D Multiplicative properties274
E Uniqueness of the universal R-matrix275
F The centre of Uh275
G Matrix solutions of the quantum Yang-Baxter equation276
Bibliographical notes278
9 Specializations of QUE algebras279
9.1 Rational forms280
A The definition of Uq280
B Some basic properties of Uq282
C The Harish Chandra homomorphism and the centre of Uq284
D A geometric realization285
9.2 The non-restricted specialization288
A The non-restricted integral form289
B The centre290
C The quantum coadjoint action293
9.3 The restricted specialization296
A The restricted integral form297
B A remarkable finite-dimensional Hopf algebra301
C A Frobenius map in characteristic zero304
D The quiver approach307
9.4 Automorphisms and real forms309
A Automorphisms309
B Real forms309
Bibliographical notes311
10 Representations of QUE algebras:the generic case313
10.1 Classification of finite-dimensional representations313
A Highest weight modules313
B The determinant formula319
C Specialization:the non-root of unity case324
D R-matrices associated to representations of Uq327
E Unitary representations329
10.2 Quantum invariant theory332
A Hecke and Birman-Murakami-Wenzl algebras332
B Quantum Brauer-Frobenius-Schur duality334
C Another realization of Hecke algebras336
Bibliographical notes337
11 Representations of QUE algebras:the root of unity case338
11.1 The non-restricted case339
A Parametrization of the irreducible representations of U?339
B Some explicit constructions344
C Intertwiners and the QYBE348
11.2 The restricted case351
A Highest weight representations351
B A tensor product theorem357
C Quasitensor structure359
D Some conjectures359
11.3 Tilting modules and the fusion tensor product361
A Tilting modules361
B Quantum dimensions365
C Tensor products367
D The categorical formulation370
Bibliographical notes372
12 Infinite-dimensional quantum groups374
12.1 Yangians and their representations375
A Three realizations375
B Basic properties380
C Classification of the finite-dimensional representations383
D Evaluation representations386
E The sl2 case388
12.2 Quantum affine algebras392
A Another realization:quantum loop algebras392
B Finite-dimensional representations of quantum loop algebras394
C Evaluation representations399
12.3 Frobenius-Schur duality for Yangians and quantum affine algebras403
A Affine Hecke algebras and their degenerations403
B Representations of affine Hecke algebras405
C Duality for U?(sln+1(?))-revisited408
D Quantum affine algebras and affine Hecke algebras410
E Yangians and degenerate affine Hecke algebras413
12.4 Yangians and infinite-dimensional classical groups414
A Tame representations415
B The relation with Yangians416
12.5 Rational and trigonometric solutions of the QYBE417
A Yangians and rational solutions418
B Quantum affine algebras and trigonometric solutions423
Bibliographical notes426
13 Quantum harmonic analysis428
13.1 Compact quantum groups and their representations430
A Definitions430
B Highest weight representations433
C The sl2 case435
D The general case:tensor products437
E The twisted case and quantum tori439
F Representations at roots of unity442
13.2 Quantum homogeneous spaces445
A Quantum G-spaces445
B Quantum flag manifolds and Schubert varieties447
C Quantum spheres448
13.3 Compact matrix quantum groups451
A C* completions and compact matrix quantum groups451
B The Haar integral on compact quantum groups454
13.4 A non-compact quantum group459
A The quantum euclidean group459
B Representation theory462
C Invariant integration on the quantum euclidean group463
13.5 q-special functions465
A Little q-Jacobi polynomials and quantum SU2466
B Big q-Jacobi polynomials and quantum spheres467
C q-Bessel functions and the quantum euclidean group469
Bibliographical notes473
14 Canonical bases475
14.1 Crystal bases476
A Gelfand-Tsetlin bases476
B Crystal bases478
C Globalization480
D Crystal graphs and tensor products481
14.2 Lusztig's canonical bases486
A The algebraic construction486
B The topological construction488
C Some combinatorial formulas490
Bibliographical notes492
15 Quantum group invariants of knots and 3-manifolds494
15.1 Knots and 3-manifolds:a quick review495
A From braids to links496
B From links to 3-manifolds502
15.2 Link invariants from quantum groups504
A Link invariants from R-matrices504
B Link invariants from vertex models510
15.3 Modular Hopf algebras and 3-manifold invariants517
A Modular Hopf algebras517
B The construction of 3-manifold invariants522
Bibliographical notes525
16 Quasi-Hopf algebras and the Knizhnik-Zamolodchikov equation527
16.1 Quasi-Hopf algebras528
A Definitions529
B An example from conformal field theory533
C Quasi-Hopf QUE algebras534
16.2 The Kohno-Drinfel'd monodromy theorem537
A Braid groups and configuration spaces537
B The Knizhnik-Zamolodchikov equation539
C The KZ equation and affine Lie algebras541
D Quantization and the KZ equation543
E The monodromy theorem549
16.3 Affine Lie algebras and quantum groups550
A The category O?551
B The tensor product552
C The equivalence theorem555
16.4 Quasi-Hopf algebras and Grothendieck's esquisse556
A Gal(?/?)and pro-finite fundamental groups557
B The Grothendieck-Teichmüller group and quasitriangular quasi-Hopf algebras559
Bibliographical notes560
Appendix Kac-Moody algebras562
A 1 Generalized Cartan matrices562
A 2 Kac-Moody algebras562
A 3 The invariant bilinear form563
A 4 Roots563
A 5 The Weyl group564
A 6 Root vectors565
A 7 Affine Lie algebras565
A 8 Highest weight modules566
References567
Index of notation638
General index643
热门推荐
- 3364856.html
- 2159050.html
- 2212841.html
- 571739.html
- 1658607.html
- 2419369.html
- 3520271.html
- 2698594.html
- 89293.html
- 123354.html
- http://www.ickdjs.cc/book_243053.html
- http://www.ickdjs.cc/book_2774782.html
- http://www.ickdjs.cc/book_2979764.html
- http://www.ickdjs.cc/book_3561521.html
- http://www.ickdjs.cc/book_382599.html
- http://www.ickdjs.cc/book_2562299.html
- http://www.ickdjs.cc/book_311814.html
- http://www.ickdjs.cc/book_2920623.html
- http://www.ickdjs.cc/book_479902.html
- http://www.ickdjs.cc/book_830850.html