图书介绍

高等数学 上 应用理工类2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

高等数学 上 应用理工类
  • 寿纪麟,于大光,张世梅编著 著
  • 出版社: 西安:西安交通大学出版社
  • ISBN:9787560531656
  • 出版时间:2009
  • 标注页数:220页
  • 文件大小:14MB
  • 文件页数:229页
  • 主题词:高等数学-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

高等数学 上 应用理工类PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 函数、极限与连续1

1.1 函数的概念1

1.1.1 区间与邻域1

1.1.2 函数的概念2

1.1.3 初等函数4

习题1-111

1.2 极限的定义和性质12

1.2.1 极限的定义12

1.2.2 极限的性质16

习题1-217

1.3 极限的运算18

1.3.1 极限的运算法则18

1.3.2 两个重要极限21

习题1-325

1.4 无穷小量与无穷大量26

1.4.1 无穷小量27

1.4.2 无穷小量的比较28

1.4.3 无穷大量30

习题1-431

1.5 函数的连续性32

1.5.1 函数的连续性32

1.5.2 函数的间断点34

1.5.3 连续函数的性质及初等函数的连续性36

1.5.4 闭区间上连续函数的性质38

习题1-540

第2章 导数与微分41

2.1 导数的概念41

2.1.1 引例41

2.1.2 导数的概念43

2.1.3 导数的几何意义45

2.1.4 函数的可导性与连续性的关系46

2.1.5 求导数举例46

习题2-149

2.2 函数的求导法则50

2.2.1 导数的四则运算法则51

2.2.2 反函数的求导法则53

2.2.3 复合函数的求导法则54

2.2.4 初等函数的求导小结56

习题2-257

2.3 隐函数与参数方程的求导法 高阶导数58

2.3.1 隐函数的导数58

2.3.2 由参数方程确定的函数的导数60

2.3.3 高阶导数62

习题2-364

2.4 函数的微分66

2.4.1 引例66

2.4.2 微分的定义66

2.4.3 微分的几何意义68

2.4.4 微分的运算法则及微分公式表69

2.4.5 微分在近似计算中的应用70

习题2-471

2.5 相关变化率72

习题2-573

第3章 中值定理与导数的应用75

3.1 中值定理75

习题3-179

3.2 洛必达法则80

习题3-283

3.3 函数的单调性与曲线的凹凸性84

3.3.1 函数的单调性84

3.3.2 曲线的凹凸性与拐点87

习题3-389

3.4 函数的极值与最值90

3.4.1 函数极值的定义90

3.4.2 函数的极值判别与求法91

3.4.3 最大、最小值问题93

习题3-496

3.5 函数图形的描绘97

3.5.1 曲线的渐近线97

3.5.2 函数图形的描绘98

习题3-599

第4章 一元函数积分学100

4.1 定积分的概念与性质100

4.1.1 引例100

4.1.2 定积分的定义103

4.1.3 定积分的几何意义104

4.1.4 定积分的性质106

习题4-1109

4.2 微积分基本公式110

4.2.1 原函数的概念110

4.2.2 变上限积分111

4.2.3 牛顿-莱布尼兹公式113

4.2.4 不定积分的概念和性质114

4.2.5 用直接积分法求积分116

习题4-2118

4.3 凑微分法119

习题4-3126

4.4 换元积分法127

习题4-4135

4.5 分部积分法135

习题4-5140

4.6 广义积分140

4.6.1 无穷限的广义积分141

4.6.2 无界函数的广义积分143

习题4-6146

第5章 定积分的应用147

5.1 定积分的微元法147

5.2 定积分的几何应用148

5.2.1 求平面图形的面积148

5.2.2 求体积154

5.2.3 求平面曲线的弧长157

习题5-2160

5.3 定积分的物理应用161

5.3.1 变力沿直线所做的功161

5.3.2 水压力163

5.3.3 引力164

5.3.4 其它应用165

习题5-3166

第6章 向量代数与空间解析几何167

6.1 向量及其运算167

6.1.1 向量的概念167

6.1.2 向量的线性运算168

6.1.3 空间直角坐标系169

6.1.4 向量的坐标171

6.1.5 向量的数量积172

6.1.6 向量的向量积175

习题6-1177

6.2 平面、直线及其方程177

6.2.1 空间平面及其方程177

6.2.2 空间直线及其方程183

习题6-2187

6.3 曲面、空间曲线及其方程188

6.3.1 曲面及其方程188

6.3.2 空间曲线及其方程197

习题6-3200

附录Ⅰ 常用的初等数学公式202

附录Ⅱ 极坐标简介205

附录Ⅲ 几种常用的曲线207

习题答案210

热门推荐