图书介绍
GEOMICROBIOLOGY FIFTH EDITION2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- HENRY LUTZ EHRLICH AND DIANNE K.NEWMAN 著
- 出版社: CRC PRESS
- ISBN:0849379067
- 出版时间:2009
- 标注页数:606页
- 文件大小:137MB
- 文件页数:625页
- 主题词:
PDF下载
下载说明
GEOMICROBIOLOGY FIFTH EDITIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Introduction1
References3
Chapter 2 Earth as a Microbial Habitat5
2.1 Geologically Important Features5
2.2 Biosphere10
2.3 Summary11
References11
Chapter 3 Origin of Life and Its Early History15
3.1 Beginnings15
3.1.1 Origin of Life on Earth: Panspermia15
3.1.2 Origin of Life on Earth: de novo Appearance16
3.1.3 Life from Abiotically Formed Organic Molecules in Aqueous Solution Organic Soup Theory16
3.1.4 Surface Metabolism Theory18
3.1.5 Origin of Life through Iron Monosulfide Bubbles in Hadean Ocean at the Interface of Sulfide-Bearing Hydrothermal Solution and Iron-Bearing Ocean Water19
3.2 Evolution of Life through the Precambrian: Biological and Biochemical Benchmarks20
3.2.1 Early Evolution According to Organic Soup Scenario21
3.2.2 Early Evolution According to Surface Metabolist Scenario27
3.3 Evidence28
3.4 Summary31
References32
Chapter 4 Lithosphere as Microbial Habitat37
4.1 Rock and Minerals37
4.2 Mineral Soil39
4.2.1 Origin of Mineral Soil39
4.2.2 Some Structural Features of Mineral Soil40
4.2.3 Effects of Plants and Animals on Soil Evolution42
4.2.4 Effects of Microbes on Soil Evolution42
4.2.5 Effects of Water on Soil Erosion43
4.2.6 Water Distribution in Mineral Soil43
4.2.7 Nutrient Availability in Mineral Soil44
4.2.8 Some Major Soil Types45
4.2.9 Types of Microbes and Their Distribution in Mineral Soil47
4.3 Organic Soils49
4.4 The Deep Subsurface50
4.5 Summary51
References52
Chapter 5 The Hydrosphere as Microbial Habitat57
5.1The Oceans57
5.1.1 Physical Attributes57
5.1.2 Ocean in Motion59
5.1.3 Chemical and Physical Properties of Seawater62
5.1.4 Microbial Distribution in Water Column and Sediments68
5.1.5 Effects of Temperature, Hydrostatic Pressure, and Salinity on Microbial Distribution in Oceans70
5.1.6 Dominant Phytoplankters and Zooplankters in Oceans71
5.1.7 Plankters of Geomicrobial Interest72
5.1.8 Bacterial Flora in Oceans72
5.2Freshwater Lakes73
5.2.1Some Physical and Chemical Features of Lakes74
5.2.2Lake Bottoms76
5.2.3Lake Fertility77
5.2.4Lake Evolution77
5.2.5Microbial Populations in Lakes77
5.3Rivers78
5.4Groundwaters79
5.5Summary82
References83
Chapter 6 Geomicrobial Processes: Physiological and Biochemical Overview89
6.1Types of Geornicrobial Agents89
6.2Geomicrobially Important Physiological Groups of Prokaryotes90
6.3Role of Microbes in Inorganic Conversions in Lithosphere and Hydrosphere91
6.4Types of Microbial Activities Influencing Geological Processes92
6.5Microbes as Catalysts of Geochernical Processes93
6.5.1 Catabolic Reactions: Aerobic Respiration94
6.5.2 Catabolic Reactions: Anaerobic Respiration96
6.5.3 Catabolic Reactions: Respiration Involving Insoluble Inorganic Substrates as Electron Donors or Acceptors98
6.5.4 Catabolic Reactions: Fermentation100
6.5.5 How Energy Is Generated by Aerobic and Anaerobic Respirers and Fermenters During Catabolism101
6.5.6 How Chemolithoautotrophic Bacteria Chemosynthetic Autotrophs Generate Reducing Power for Assimilating CO2 and Converting It into Organic Carbon103
6.5.7 How Photosynthetic Microbes Generate Energy and Reducing Power103
6.5.8 Anabolism: How Microbes Use Energy Trapped in High-Energy Bonds to Drive Energy-Consuming Reactions105
6.5.9 Carbon Assimilation by Mixotrophs, Photoheterotrophs,and Heterotrophs108
6.6Microbial Mineralization of Organic Matter108
6.7Microbial Products of Metabolism That Can Cause Geomicrobial Transformations110
6.8Physical Parameters That Influence Geomicrobial Activity110
6.9Summary112
References113
Chapter 7 Nonmolecular Methods in Geomicrobiology117
7.1 Introduction117
7.2 Detection, Isolation, and Identification of Geomicrobially Active Organisms118
7.2.1 In Situ Observation of Geomicrobial Agents118
7.2.2 Identification by Application of Molecular Biological Techniques120
7.3 Sampling120
7.3.1 Terrestrial Surface/Subsurface Sampling121
7.3.2 Aquatic Sampling121
7.3.3 Sample Storage122
7.3.4 Culture Isolation and Characterization of Active Agents from Environmental Samples124
7.4 In Situ Study of Past Geomicrobial Activity125
7.5 In Situ Study of Ongoing Geomicrobial Activity126
7.6 Laboratory Reconstruction of Geomicrobial Processes in Nature128
7.7 Quantitative Study of Growth on Surfaces132
7.8 Test for Distinguishing between Enzymatic and Nonenzymatic Geomicrobial Activity134
7.9 Study of Reaction Products of Geomicrobial Transformation134
7.10 Summary135
References135
Chapter 8 Molecular Methods in Geomicrobiology139
8.1Introduction139
8.2Who Is There? Identification of Geomicrobial Organisms139
8.2.1 Culture-Independent Methods139
8.2.2 New Culturing Techniques141
8.3What Are They Doing? Deducing Activities of Geomicrobial Organisms141
8.3.1 Single-Cell Isotopic Techniques142
8.3.2 Single-Cell Metabolite Techniques144
8.3.3 Community Techniques Involving Isotopes145
8.3.4 Community Techniques Involving Genomics146
8.3.5 Probing for Expression of Metabolic Genes or Their Gene Products147
8.4How Are They Doing It? Unraveling the Mechanisms of Geomicrobial Organisms147
8.4.1Genetic Approaches148
8.4.2Bioinformatic Approaches151
8.4.3Follow-Up Studies151
8.5Summary152
References152
Chapter 9 Microbial Formation and Degradation of Carbonates157
9.1 Distribution of Carbon in Earths Crust157
9.2 Biological Carbonate Deposition157
9.2.1 Historical Perspective of Study of Carbonate Deposition158
9.2.2 Basis for Microbial Carbonate Deposition161
9.2.3 Conditions for Extracellular Microbial Carbonate Precipitation164
9.2.4 Carbonate Deposition by Cyanobacteria167
9.2.5 Possible Model for Oolite Formation168
9.2.6 Structural or Intracellular Carbonate Deposition by Microbes168
9.2.7 Models for Skeletal Carbonate Formation171
9.2.8 Microbial Formation of Carbonates Other Than Those of Calcium173
9.2.8.1 Sodium Carbonate173
9.2.8.2 Manganous Carbonate174
9.2.8.3 Ferrous Carbonate176
9.2.8.4 Strontium Carbonate177
9.2.8.5 Magnesium Carbonate177
9.3 Biodegradation of Carbonates178
9.3.1 Biodegradation of Limestone178
9.3.2 Cyanobacteria, Algae, and Fungi That Bore into Limestone180
9.4 Biological Carbonate Formation and Degradation and the Carbon Cycle183
9.5 Summary184
References184
Chapter 10 Geomicrobial Interactions with Silicon191
10.1 Distribution and Some Chemical Properties191
10.2 Biologically Important Properties of Silicon and Its Compounds192
10.3 Bioconcentration of Silicon193
10.3.1 Bacteria193
10.3.2 Fungi195
10.3.3 Diatoms195
10.4 Biomobilization of Silicon and Other Constituents of SilicatesBioweathering198
10.4.1 Solubilization by Ligands198
10.4.2 Solubilization by Acids200
10.4.3 Solubilization by Alkali201
10.4.4 Solubilization by Extracellular Polysaccharide202
10.4.5 Depolymerization of Polysilicates202
10.5 Role of Microbes in the Silica Cycle202
10.6 Summary203
References204
Chapter 11 Geomicrobiology of Aluminum: Microbes and Bauxite209
11.1 Introduction209
11.2 Microbial Role in Bauxite Formation210
11.2.1 Nature of Bauxite210
11.2.2 Biological Role in Weathering of the Parent Rock Material210
11.2.3 Weathering Phase211
11.2.4 Bauxite Maturation Phase211
11.2.5 Bacterial Reduction of Fe in Bauxites from Different Locations214
11.2.6 Other Observations of Bacterial Interaction with Bauxite214
11.3 Summary215
References215
Chapter 12 Geomicrobial Interactions with Phosphorus219
12.1 Biological Importance of Phosphorus219
12.2 Occurrence in Earths Crust219
12.3 Conversion of Organic into Inorganic Phosphorus and Synthesis of Phosphate Esters220
12.4 Assimilation of Phosphorus221
12.5 Microbial Solubilization of Phosphate Minerals222
12.6 Microbial Phosphate Immobilization223
12.6.1 Phosphorite Deposition223
12.6.1.1 Authigenic Formations224
12.6.1.2 Diagenetic Formation226
12.6.2 Occurrences of Phosphorite Deposits226
12.6.3 Deposition of Other Phosphate Minerals226
12.7 Microbial Reduction of Oxidized Forms of Phosphorus227
12.8 Microbial Oxidation of Reduced Forms of Phosphorus228
12.9 Microbial Role in the Phosphorus Cycle229
12.10 Summary229
References229
Chapter 13 Geomicrobially Important Interactions with Nitrogen233
13.1 Nitrogen in Biosphere233
13.2 Microbial Interactions with Nitrogen233
13.2.1 Ammonification233
13.2.2 Nitrification235
13.2.3 Ammonia Oxidation235
13.2.4 Nitrite Oxidation236
13.2.5 Heterotrophic Nitrification236
13.2.6 Anaerobic Ammonia Oxidation Anammox236
13.2.7 Denitrification237
13.2.8 Nitrogen Fixation238
13.3 Microbial Role in the Nitrogen Cycle239
13.4 Summary240
References240
Chapter 14 Geomicrobial Interactions with Arsenic and Antimony243
14.1 Introduction243
14.2 Arsenic243
14.2.1 Distribution243
14.2.2 Some Chemical Characteristics243
14.2.3 Toxicity244
14.2.4 Microbial Oxidation of Reduced Forms of Arsenic245
14.2.4.1 Aerobic Oxidation of Dissolved Arsenic245
14.2.4.2 Anaerobic Oxidation of Dissolved Arsenic247
14.2.5 Interaction with Arsenic-Containing Minerals247
14.2.6 Microbial Reduction of Oxidized Arsenic Species250
14.2.7 Arsenic Respiration251
14.2.8 Direct Observations of Arsenite Oxidation and Arsenate Reduction In Situ254
14.3 Antimony256
14.3.1 Antimony Distribution in Earth's Crust256
14.3.2 Microbial Oxidation of Antimony Compounds256
14.3.3 Microbial Reduction of Oxidized Antimony Minerals257
14.4 Summary257
References258
Chapter 15 Geornicrobiology of Mercury265
15.1 Introduction265
15.2 Distribution of Mercury in Earth's Crust265
15.3 Anthropogenic Mercury266
15.4 Mercury in Environment266
15.5 Specific Microbial Interactions with Mercury267
15.5.1 Nonenzymatic Methylation of Mercury by Microbes267
15.5.2 Enzymatic Methylation of Mercury by Microbes268
15.5.3 Microbial Diphenylmercury Formation269
15.5.4 Microbial Reduction of Mercuric Ion269
15.5.5 Formation of Meta-Cinnabar (?-HgS)from Hg(Ⅱ)by Cyanobacteria270
15.5.6 Microbial Decomposition of Organomercurials270
15.5.7 Oxidation of Metallic Mercury270
15.6 Genetic Control of Mercury Transformations271
15.7 Environmental Significance of Microbial Mercury Transformations272
15.8 Mercury Cycle272
15.9 Summary273
References274
Chapter 16 Geornicrobiology of Iron279
16.1 Iron Distribution in Earth's Crust279
16.2 Geochemically Important Properties279
16.3 Biological Importance of Iron280
16.3.1 Function of Iron in Cells280
16.3.2 Iron Assimilation by Microbes280
16.4 Iron as Energy Source for Bacteria282
16.4.1 Acidophiles282
16.4.2 Domain Bacteria: Mesophiles282
16.4.2.1 Acidithiobacillus (Formerly Thiobacillus)ferrooxidans282
16.4.2.2 Thiobacillus prosperus294
16.4.2.3 Leptospirillum ferrooxidans294
16.4.2.4 Metallogeuium295
16.4.2.5 Ferromicrobium acidophilum295
16.4.2.6 Strain CCH7295
16.4.3 Domain Bacteria: Thermophiles295
16.4.3.1 Sulfobacillus thermosulfidooxidans295
16.4.3.2 Sulfobacillus acidophilus296
16.4.3.3 Acidimicrobium ferrooxidans296
16.4.4 Domain Archaea: Mesophiles296
16.4.4.1 Ferroplasma acidiphilum296
16.4.4.2 Ferroplasma acidarmanus296
16.4.5 Domain Archaea: Thermophiles296
16.4.5.1 Acidianus brierleyi296
16.4.5.2 Sulfolobus acidocaldarius298
16.4.6 Domain Bacteria: Neutrophilic Iron Oxidizers298
16.4.6.1 Unicellular Bacteria298
16.4.7 Appendaged Bacteria298
16.4.7.1 Gallionella ferruginea298
16.4.7.2 Sheathed, Encapsulated, and Wall-Less Iron Bacteria301
16.5 Anaerobic Oxidation of Ferrous Iron302
16.5.1 Phototrophic Oxidation302
16.5.2 Chemotrophic Oxidation303
16.6 IronIII as Terminal Electron Acceptor in Bacterial Respiration304
16.6.1 Bacterial Ferric Iron Reduction Accompanying Fermentation304
16.6.2 Ferric Iron Respiration: Early History306
16.6.3 Metabolic Evidence for Enzymatic Ferric Iron Reduction308
16.6.4 Ferric Iron Respiration: Current Status309
16.6.5 Electron Transfer from Cell Surface of a Dissimilatory Fe Reducer to Ferric Oxide Surface313
16.6.6 Bioenergetics of Dissimilatory Iron Reduction314
16.6.7 Ferric Iron Reduction as Electron Sink314
16.6.8 Reduction of Ferric Iron by Fungi315
16.6.9 Types of Ferric Compounds Attacked by Dissimilatory Iron Reduction315
16.7 Nonenzymatic Oxidation of Ferrous Iron and Reduction of Ferric Iron by Microbes316
16.7.1 Nonenzymatic Oxidation316
16.7.2 Nonenzymatic Reduction317
16.8 Microbial Precipitation of Iron318
16.8.1 Enzymatic Processes318
16.8.2 Nonenzymatic Processes319
16.8.3 Bioaccumulation of Iron320
16.9 Concept of Iron Bacteria320
16.10 Sedimentary Iron Deposits of Putative Biogenic Origin322
16.11 Microbial Mobilization of Iron from Minerals in Ore, Soil,and Sediments325
16.12 Microbes and Iron Cycle326
16.13 Summary327
References329
Chapter 17 Geomicrobiology of Manganese347
17.1 Occurrence of Manganese in Earths Crust347
17.2 Geochemically Important Properties of Manganese347
17.3 Biological Importance of Manganese348
17.4 Manganese-Oxidizing and Manganese-Reducing Bacteria and Fungi348
17.4.1 Manganese-Oxidizing Bacteria and Fungi348
17.4.2 Manganese-Reducing Bacteria and Fungi351
17.5 Biooxidation of Manganese352
17.5.1 Enzymatic Manganese Oxidation352
17.5.2 Group I Manganese Oxidizers354
17.5.2.1 Subgroup Ia354
17.5.2.2 Subgroup Ib357
17.5.2.3 Subgroup Ic357
17.5.2.4 Subgroup Id358
17.5.2.5 Uncertain Subgroup Affiliations359
17.5.3 Group Ⅱ Manganese Oxidizers359
17.5.4 Group Ⅲ Manganese Oxidizers362
17.5.5 Nonenzymatic Manganese Oxidation362
17.6 Bioreduction of Manganese363
17.6.1 Organisms Capable of Reducing Manganese Oxides Only Anaerobically364
17.6.2 Reduction of Manganese Oxides by Organisms Capable of Reducing Manganese Oxides Aerobically and Anaerobically365
17.6.3 Bacterial Reduction of Manganese(Ⅲ)370
17.6.4 Nonenzymatic Reduction of Manganese Oxides371
17.7 Bioaccumulation of Manganese372
17.8 Microbial Manganese Deposition in Soil and on Rocks375
17.8.1 Soil375
17.8.2 Rocks377
17.8.3 Ores378
17.9 Microbial Manganese Deposition in Freshwater Environments379
17.9.1 Bacterial Manganese Oxidation in Springs379
17.9.2 Bacterial Manganese Oxidation in Lakes379
17.9.3 Bacterial Manganese Oxidation in Water Distribution Systems383
17.10 Microbial Manganese Deposition in Marine Environments384
17.10.1 Microbial Manganese Oxidations in Bays, Estuaries,Inlets, the Black Sea, etc385
17.10.2 Manganese Oxidation in Mixed Layer of Ocean386
17.10.3 Manganese Oxidation on Ocean Floor387
17.10.4 Manganese Oxidation around Hydrothermal Vents392
17.10.5 Bacterial Manganese Precipitation in Seawater Column396
17.11 Microbial Mobilization of Manganese in Soils and Ores397
17.11.1 Soils397
17.11.2 Ores398
17.12 Microbial Mobilization of Manganese in Freshwater Environments399
17.13 Microbial Mobilization of Manganese in Marine Environments400
17.14 Microbial Manganese Reduction and Mineralization of Organic Matter401
17.15 Microbial Role in Manganese Cycle in Nature402
17.16 Summary405
References406
Chapter 18 Geomicrobial Interactions with Chromium, Molybdenum, Vanadium,Uranium, Polonium, and Plutonium421
18.1 Microbial Interaction with Chromium421
18.1.1 Occurrence of Chromium421
18.1.2 Chemically and Biologically Important Properties421
18.1.3 Mobilization of Chromium with Microbially Generated Lixiviants422
18.1.4 Biooxidation of Chromium422
18.1.5 Bioreduction of Chromium422
18.1.6 In Situ Chromate Reducing Activity426
18.1.7 Applied Aspects of Chromium Reduction427
18.2 Microbial Interaction with Molybdenum427
18.2.1 Occurrence and Properties of Molybdenum427
18.2.2 Microbial Oxidation and Reduction427
18.3 Microbial Interaction with Vanadium428
18.3.1 Bacterial Oxidation of Vanadium428
18.4 Microbial Interaction with Uranium429
18.4.1 Occurrence and Properties of Uranium429
18.4.2 Microbial Oxidation of U429
18.4.3 Microbial Reduction of U430
18.4.4 Bioremediation of Uranium Pollution431
18.5 Bacterial Interaction with Polonium432
18.6 Bacterial Interaction with Plutonium432
18.7 Summary432
References433
Chapter 19 Geomicrobiology of Sulfur439
19.1 Occurrence of Sulfur in Earths Crust439
19.2 Geochemically Important Properties of Sulfur439
19.3 Biological Importance of Sulfur440
19.4 Mineralization of Organic Sulfur Compounds440
19.5 Sulfur Assimilation441
19.6 Geomicrobially Important Types of Bacteria That React with Sulfur and Sulfur Compounds442
19.6.1 Oxidizers of Reduced Sulfur442
19.6.2 Reducers of Oxidized Forms of Sulfur446
19.6.2.1 Sulfate Reduction446
19.6.2.2 Sulfate Reduction448
19.6.2.3 Reduction of Elemental Sulfur448
19.7 Physiology and Biochemistry of Microbial Oxidation of Reduced Forms of Sulfur449
19.7.1 Sulfide449
19.7.1.1 Aerobic Attack449
19.7.1.2 Anaerobic Attack450
19.7.1.3 Oxidation of Sulfide by Heterotrophs and Mixotrophs451
19.7.2 Elemental Sulfur451
19.7.2.1 Aerobic Attack451
19.7.2.2 Anaerobic Oxidation of Elemental Sulfur451
19.7.2.3 Disproportionation of Sulfur451
19.7.3 Sulfite Oxidation452
19.7.3.1 Oxidation by Aerobes452
19.7.3.2 Oxidation by Anaerobes453
19.7.4 Thiosulfate Oxidation453
19.7.4.1 Disproportionation of Thiosulfate455
19.7.5 Tetrathionate Oxidation456
19.7.6 Common Mechanism for Oxidizing Reduced Inorganic Sulfur Compounds in Domain Bacteria456
19.8 Autotrophic and Mixotrophic Growth on Reduced Forms of Sulfur456
19.8.1 Energy Coupling in Bacterial Sulfur Oxidation456
19.8.2 Reduced Forms of Sulfur as Sources of Reducing Power for CO2 Fixation by Autotrophs457
19.8.2.1 Chemosynthetic Autotrophs457
19.8.2.2 Photosynthetic Autotrophs457
19.8.3 CO2 Fixation by Autotrophs457
19.8.3.1 Chemosynthetic Autotrophs457
19.8.3.2 Photosynthetic Autotrophs458
19.8.4 Mixotrophy458
19.8.4.1 Free-Living Bacteria458
19.8.5 Unusual Consortia458
19.9 Anaerobic Respiration Using Oxidized Forms of Sulfur as Terminal Electron Acceptors459
19.9.1 Reduction of Fully or Partially Oxidized Sulfur459
19.9.2 Biochemistry of Dissimilatory Sulfate Reduction459
19.9.3 Sulfur Isotope Fractionation461
19.9.4 Reduction of Elemental Sulfur462
19.9.5 Reduction of Thiosulfate463
19.9.6 Terminal Electron Acceptors Other Than Sulfate, Sulfite,Thiosulfate, or Sulfur463
19.9.7 Oxygen Tolerance of Sulfate-Reducers464
19.10 Autotrophy, Mixotrophy, and Heterotrophy among Sulfate-Reducing Bacteria464
19.10.1 Autotrophy464
19.10.2 Mixotrophy465
19.10.3 Heterotrophy465
19.11 Biodeposition of Native Sulfur466
19.11.1 Types of Deposits466
19.11.2 Examples of Syngenetic Sulfur Deposition466
19.11.2.1 Cyrenaican Lakes, Libya, North Africa466
19.11.2.2 Lake Senoye469
19.11.2.3 Lake Eyre469
19.11.2.4 Solar Lake470
19.11.2.5 Thermal Lakes and Springs470
19.11.3 Examples of Epigenetic Sulfur Deposits472
19.11.3.1 Sicilian Sulfur Deposits472
19.11.3.2 Salt Domes472
19.11.3.3 Gaurdak Sulfur Deposit474
19.11.3.4 Shor-Su Sulfur Deposit474
19.11.3.5 Kara Kum Sulfur Deposit475
19.12 Microbial Role in Sulfur Cycle475
19.13 Summary476
References477
Chapter 20 Biogenesis and Biodegradation of Sulfide Minerals at Earths Surface491
20.1 Introduction491
20.2 Natural Origin of Metal Sulfides491
20.2.1 Hydrothermal Origin Abiotic491
20.2.2 Sedimentary Metal Sulfides of Biogenic Origin493
20.3 Principles of Metal Sulfide Formation494
20.4 Laboratory Evidence in Support of Biogenesis of Metal Sulfides495
20.4.1 Batch Cultures495
20.4.2 Column Experiment: Model for Biogenesis of Sedimentary Metal Sulfides497
20.5 Biooxidation of Metal Sulfides498
20.5.1 Organisms Involved in Biooxidation of Metal Sulfides498
20.5.2 Direct Oxidation499
20.5.3 Indirect Oxidation503
20.5.4 Pyrite Oxidation504
20.6 Bioleaching of Metal Sulfide and Uraninite Ores507
20.6.1 Metal Sulfide Ores507
20.6.2 Uraninite Leaching511
20.6.3 Mobilization of Uranium in Granitic Rocks by Heterotrophs512
20.6.4 Study of Bioleaching Kinetics513
20.6.5 Industrial versus Natural Bioleaching513
20.7 Bioextraction of Metal Sulfide Ores by Complexation513
20.8 Formation of Acid Coal Mine Drainage514
20.8.1 New Discoveries Relating to Acid Mine Drainage515
20.9 Summary517
References518
Chapter 21 Geomicrobiology of Selenium and Tellurium527
21.1 Occurrence in Earths Crust527
21.2 Biological Importance527
21.3 Toxicity of Selenium and Tellurium528
21.4 Biooxidation of Reduced Forms of Selenium528
21.5 Bioreduction of Oxidized Selenium Compounds528
21.5.1 Other Products of Selenate and Selenite Reduction530
21.5.2 Selenium Reduction in the Environment531
21.6 Selenium Cycle532
21.7 Biooxidation of Reduced Forms of Tellurium532
21.8 Bioreduction of Oxidized Forms of Tellurium533
21.9 Summary533
References534
Chapter 22 Geomicrobiology of Fossil Fuels537
22.1 Introduction537
22.2 Natural Abundance of Fossil Fuels537
22.3 Methane537
22.3.1 Methanogens539
22.3.2 Methanogenesis and Carbon Assimilation by Methanogens541
22.3.2.1 Methanogenesis541
22.3.3 Bioenergetics of Methanogenesis544
22.3.4 Carbon Fixation by Methanogens544
22.3.5 Microbial Methane Oxidation545
22.3.5.1 Aerobic Methanotrophy545
22.3.5.2 Anaerobic Methanotrophy547
22.3.6 Biochemistry of Methane Oxidation in Aerobic Methanotrophs548
22.3.7 Carbon Assimilation by Aerobic Methanotrophs549
22.3.8 Position of Methane in Carbon Cycle550
22.4 Peat550
22.4.1 Nature of Peat550
22.4.2 Roles of Microbes in Peat Formation552
22.5 Coal552
22.5.1 Nature of Coal552
22.5.2 Role of Microbes in Coal Formation553
22.5.3 Coal as Microbial Substrate554
22.5.4 Microbial Desulfurization of Coal555
22.6 Petroleum556
22.6.1 Nature of Petroleum556
22.6.2 Role of Microbes in Petroleum Formation556
22.6.3 Role of Microbes in Petroleum Migration in Reservoir Rock557
22.6.4 Microbes in Secondary and Tertiary Oil Recovery558
22.6.5 Removal of Organic Sulfur from Petroleum559
22.6.6 Microbes in Petroleum Degradation559
22.6.7 Current State of Knowledge of Aerobic and Anaerobic Petroleum Degradation by Microbes560
22.6.8 Use of Microbes in Prospecting for Petroleum563
22.6.9 Microbes and Shale Oil563
22.7 Summary564
References565
Glossary577
Index589
热门推荐
- 3455498.html
- 1922589.html
- 1804018.html
- 1189229.html
- 1951942.html
- 2802808.html
- 2269146.html
- 1207309.html
- 2502941.html
- 1464455.html
- http://www.ickdjs.cc/book_1078682.html
- http://www.ickdjs.cc/book_209118.html
- http://www.ickdjs.cc/book_1092916.html
- http://www.ickdjs.cc/book_183098.html
- http://www.ickdjs.cc/book_816345.html
- http://www.ickdjs.cc/book_3339706.html
- http://www.ickdjs.cc/book_2728373.html
- http://www.ickdjs.cc/book_2429065.html
- http://www.ickdjs.cc/book_2217662.html
- http://www.ickdjs.cc/book_793895.html