图书介绍

FUNDAMENTALS OF HEAT AND MASS TRANSFER SIXTH EDITION2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

FUNDAMENTALS OF HEAT AND MASS TRANSFER SIXTH EDITION
  • FRANK P.INCROPERA,DAVID P.DEWITT,THEODORE L.BERGMAN等 著
  • 出版社:
  • ISBN:0471794716
  • 出版时间:未知
  • 标注页数:925页
  • 文件大小:295MB
  • 文件页数:1016页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

FUNDAMENTALS OF HEAT AND MASS TRANSFER SIXTH EDITIONPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1Essential Concepts1

1.1 What and How?2

1.2 Physical Origins and Rate Equations3

1.2.1 Conduction3

1.2.2 Convection6

1.2.3 Radiation9

1.2.4 Relationship to Thermodynamics12

1.3 The Conservation of Energy Requirement13

1.3.1 Conservation of Energy for a Control Volume13

1.3.2 The Surface Energy Balance25

1.3.3 Application of the Conservation Laws:Methodology28

1.4 Analysis of Heat Transfer Problems: Methodology29

1.5 Relevance of Heat Transfer32

1.6 Units and Dimensions35

1.7 Summary38

References41

Problems41

CHAPTER 2Fundamental Concepts of Conduction57

2.1 The Conduction Rate Equation58

2.2 The Thermal Properties of Matter60

2.2.1 Thermal Conductivity60

2.2.2 Other Relevant Properties67

2.3 The Heat Diffusion Equation70

2.4 Boundary and Initial Conditions77

2.5 Summary81

References82

Problems82

CHAPTER 3Steady-State, One-Dimensional Conduction95

3.1 The Plane Wall96

3.1.1 Temperature Distribution96

3.1.2 Thermal Resistance98

3.1.3 The Composite Wall99

3.1.4 Contact Resistance101

3.2 An Alternative Conduction Analysis112

3.3 Radial Systems116

3.3.1 The Cylinder116

3.3.2 The Sphere122

3.4 Summary of One-Dimensional Conduction Results125

3.5 Conduction with Thermal Energy Generation126

3.5.1 The Plane Wall127

3.5.2 Radial Systems132

3.5.3 Application of Resistance Concepts137

3.6 Heat Transfer from Extended Surfaces137

3.6.1 A General Conduction Analysis139

3.6.2 Fins of Uniform Cross-Sectional Area141

3.6.3 Fin Performance147

3.6.4 Fins of Nonuniform Cross-Sectional Area150

3.6.5 Overall Surface Efficiency153

3.7 The Bioheat Equation162

3.8 Summary166

References168

Problems169

CHAPTER 4Steady-State, Multi-Dimensional Conduction201

4.1 Alternative Approaches202

4.2 The Method of Separation of Variables203

4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate207

4.4 Finite-Difference Equations212

4.4.1 The Nodal Network213

4.4.2 Finite-Difference Form of the Heat Equation214

4.4.3 The Energy Balance Method215

4.5 Solving the Finite-Difference Equations222

4.5.1 The Matrix Inversion Method222

4.5.2 Gauss-SeidelIteration223

4.5.3 Some Precautions229

4.6 Summary234

References235

Problems235

CHAPTER 5Time-Dependent Conduction255

5.1 The Lumped Capacitance Method256

5.2 Validity of the Lumped Capacitance Method259

5.3 General Lumped Capacitance Analysis263

5.4 Spatial Effects270

5.5 The Plane Wall with Convection272

5.5.1 Exact Solution272

5.5.2 Approximate Solution273

5.5.3 Total Energy Transfer274

5.5.4 Additional Considerations275

5.6 Radial Systems with Convection276

5.6.1 Exact Solutions276

5.6.2 Approximate Solutions277

5.6.3 Total Energy Transfer277

5.6.4 Additional Considerations278

5.7 The Semi-Infinite Solid283

5.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes290

5.8.1 Constant Temperature Boundary Conditions290

5.8.2 Constant Heat Flux Boundary Conditions292

5.8.3 Approximate Solutions293

5.9 Periodic Heating299

5.10 Finite-Difference Methods302

5.10.1 Discretization of the Heat Equation: The Explicit Method302

5.10.2 Discretization of the Heat Equation: The Implicit Method310

5.11 Summary317

References319

Problems319

CHAPTER 6Fundamental Concepts of Convection347

6.1 The Convection Boundary Layers348

6.1.1 The Velocity Boundary Layer348

6.1.2 The Thermal Boundary Layer349

6.1.3 The Concentration Boundary Layer350

6.1.4 Significance of the Boundary Layers352

6.2 Local and Average Convection Coefficients352

6.2.1 Heat Transfer352

6.2.2 Mass Transfer353

6.2.3 The Problem of Convection355

6.3 Laminar and Turbulent Flow359

6.3.1 Laminar and Turbulent Velocity Boundary Layers359

6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers361

6.4 The Boundary Layer Equations364

6.4.1 Boundary Layer Equations for Laminar Flow365

6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations367

6.5.1 Boundary Layer Similarity Parameters368

6.5.2 Functional Form of the Solutions368

6.6 Physical Significance of the Dimensionless Parameters374

6.7 Boundary Layer Analogies377

6.7.1 The Heat and Mass Transfer Analogy377

6.7.2 Evaporative Cooling381

6.7.3 The Reynolds Analogy384

6.8 The Convection Coefficients385

6.9 Summary385

References386

Problems387

CHAPTER 7External Forced Convection401

7.1 The Empirical Method403

7.2 The Flat Plate in Parallel Flow405

7.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution405

7.2.2 Turbulent Flow over an Isothermal Plate410

7.2.3 Mixed Boundary Layer Conditions411

7.2.4 Unheated Starting Length412

7.2.5 Flat Plates with Constant Heat Flux Conditions413

7.2.6 Limitations on Use of Convection Coefficients414

7.3 Methodology for a Convection Calculation414

7.4 The Cylinder in Cross Flow423

7.4.1 Flow Considerations423

7.4.2 Convection Heat and Mass Transfer425

7.5 The Sphere433

7.6 Flow Across Banks of Tubes436

7.7 Impinging Jets447

7.7.1 Hydrodynamic and Geometric Considerations447

7.7.2 Convection Heat and Mass Transfer449

7.8 Packed Beds452

7.9 Summary454

References456

Problems457

CHAPTER 8Internal Forced Convection485

8.1 Hydrodynamic Considerations486

8.1.1 Flow Conditions486

8.1.2 The Mean Velocity487

8.1.3 Velocity Profile in the Fully Developed Region488

8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow490

8.2 Thermal Considerations491

8.2.1 The Mean Temperature492

8.2.2 Newton’s Law of Cooling493

8.2.3 Fully Developed Conditions493

8.3 The Energy Balance497

8.3.1 General Considerations497

8.3.2 Constant Surface Heat Flux498

8.3.3 Constant Surface Temperature501

8.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations505

8.4.1 The Fully Developed Region505

8.4.2 The Entry Region512

8.5 Convection Correlations: Turbulent Flow in Circular Tubes514

8.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus518

8.7 Heat Transfer Enhancement521

8.8 Microscale Internal Flow524

8.8.1 Flow Conditions in Microscale Internal Flow524

8.8.2 Thermal Considerations in Microscale Internal Flow525

8.9 Convection Mass Transfer528

8.10 Summary531

References533

Problems534

CHAPTER 9Natural Convection559

9.1 Physical Considerations560

9.2 The Governing Equations563

9.3 Similarity Considerations564

9.4 Laminar Free Convection on a Vertical Surface566

9.5 The Effects of Turbulence568

9.6 Empirical Correlations: External Free Convection Flows571

9.6.1 The Vertical Plate571

9.6.2 Inclined and Horizontal Plates574

9.6.3 The Long Horizontal Cylinder579

9.6.4 Spheres583

9.7 Free Convection within Parallel Plate Channels584

9.7.1 Vertical Channels585

9.7.2 Inclined Channels587

9.8 Empirical Correlations: Enclosures587

9.8.1 Rectangular Cavities587

9.8.2 Concentric Cylinders590

9.8.3 Concentric Spheres591

9.9 Combined Free and Forced Convection593

9.10 Convection Mass Transfer594

9.11 Summary595

References596

Problems597

CHAPTER 10Convection Processes of Boiling and Condensation619

10.1 Dimensionless Parameters in Boiling and Condensation620

10.2 Boiling Modes621

10.3 Pool Boiling622

10.3.1 The Boiling Curve622

10.3.2 Modes of Pool Boiling624

10.4 Pool Boiling Correlations627

10.4.1 Nucleate Pool Boiling627

10.4.2 Critical Heat Flux for Nucleate Pool Boiling629

10.4.3 Minimum Heat Flux629

10.4.4 Film Pool Boiling630

10.4.5 Parametric Effects on Pool Boiling631

10.5 Forced Convection Boiling636

10.5.1 External Forced Convection Boiling637

10.5.2 Two-Phase Flow637

10.5.3 Two-Phase Flow in Microchannels640

10.6 Condensation: Physical Mechanisms641

10.7 Laminar Film Condensation on a Vertical Plate643

10.8 Turbulent Film Condensation646

10.9 Film Condensation on Radial Systems651

10.10 Film Condensation in Horizontal Tubes654

10.11 Dropwise Condensation655

10.12 Summary655

References656

Problems657

CHAPTER 11Heat Exchange Devices669

11.1 Heat Exchanger Types670

11.2 The Overall Heat Transfer Coefficient673

11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference675

11.3.1 The Parallel-Flow Heat Exchanger676

11.3.2 The Counterflow Heat Exchanger679

11.3.3 Special Operating Conditions679

11.4 Heat Exchanger Analysis: The Effectiveness-NTU Method686

11.4.1 Definitions686

11.4.2 Effectiveness-NTU Relations688

11.5 Heat Exchanger Design and Performance Calculations: Using the Effectiveness-NTU Method694

11.6 Compact Heat Exchangers700

11.7 Summary705

References706

Problems707

CHAPTER 12Fundamental Concepts of Radiation723

12.1 Fundamental Concepts724

12.2 Radiation Intensity727

12.2.1 Mathematical Definitions727

12.2.2 Radiation Intensity and Its Relation to Emission728

12.2.3 Relation to Irradiation733

12.2.4 Relation to Radiosity735

12.3 Blackbody Radiation736

12.3.1 The Planck Distribution737

12.3.2 Wien’s Displacement Law737

12.3.3 The Stefan-Boltzmann Law738

12.3.4 Band Emission739

12.4 Emission from Real Surfaces744

12.5 Absorption, Reflection, and Transmission by Real Surfaces752

12.5.1 Absorptivity754

12.5.2 Reflectivity755

12.5.3 Transmissivity756

12.5.4 Special Considerations757

12.6 Kirchhoff’s Law762

12.7 The Gray Surface764

12.8 Environmental Radiation770

12.9 Summary776

References780

Problems780

CHAPTER 13Radiative Transfer Between Two or More Surfaces811

13.1 The View Factor812

13.1.1 The View Factor Integral812

13.1.2 View Factor Relations813

13.2 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure822

13.2.1 Net Radiation Exchange at a Surface823

13.2.2 Radiation Exchange Between Surfaces824

13.2.3 Blackbody Radiation Exchange830

13.2.4 The Two-Surface Enclosure831

13.2.5 Radiation Shields832

13.2.6 The Reradiating Surface835

13.3 Multimode Heat Transfer839

13.4 Radiation Exchange with Participating Media842

13.4.1 Volumetric Absorption843

13.4.2 Gaseous Emission and Absorption843

13.5 Summary847

References849

Problems849

CHAPTER 14Mass Transfer by Diffusion879

14.1 Physical Origins and Rate Equations880

14.1.1 Physical Origins880

14.1.2 Mixture Composition881

14.1.3 Fick’s Law of Diffusion882

14.1.4 Mass Diffusivity883

14.2 Mass Transfer in Nonstationary Media885

14.2.1 Absolute and Diffusive Species Fluxes885

14.2.2 Evaporation in a Column888

14.3 The Stationary Medium Approximation893

14.4 Conservation of Species for a Stationary Medium894

14.4.1 Conservation of Species for a Control Volume894

14.4.2 The Mass Diffusion Equation894

14.4.3 Stationary Media with Specified Surface Concentrations897

14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces900

14.5.1 Evaporation and Sublimation901

14.5.2 Solubility of Gases in Liquids and Solids902

14.5.3 Catalytic Surface Reactions905

14.6 Mass Diffusion with Homogeneous Chemical Reactions908

14.7 Transient Diffusion911

14.8 Summary916

References917

Problems917

热门推荐