图书介绍
An Introduction to Riemannian Geometry and The Tensor Calculus2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 著
- 出版社: Cambridge At The University Press
- ISBN:9780521091886
- 出版时间:1938
- 标注页数:191页
- 文件大小:39MB
- 文件页数:202页
- 主题词:
PDF下载
下载说明
An Introduction to Riemannian Geometry and The Tensor CalculusPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter Ⅰ SOME PRELIMINARIES1
1.Determinants.Summation convention1
2.Differentiation of a determinant3
3.Matrices.Rank of a matrix4
4.Linear equations.Cramcr's rule4
5.Linear transformations6
6.Functional determinants7
7.Functional matrices9
8.Quadratic forms10
9.Real quadratic forms11
10.Pairs of quadratic forms12
11.Quadratic differential forms13
12.Differential equations14
EXAMPLES Ⅰ16
Chapter Ⅱ COORDINATES.VECTORS.TENSORS18
13.Space of N dimensions.Subspaces.Directions at a point18
14.Transformations of coordinates.Contravariant vectors19
15.Scalar invariants.Covariant vectors21
16.Scalar product of two vectors23
17.Tensors of the second order24
18.Tensors of any order26
19.Symmetric and skew-symmetric tensors27
20.Addition and multiplication of tensors28
21.Contraction.Composition of tensors.Quotient law29
22.Reciprocal symmetric tensors of the second order31
EXAMPLES Ⅱ31
Chapter Ⅲ RIEMANNIAN METRIC35
23.Riemannian space.Fundamental tensor35
24.Length of a curve.Magnitude of a vector37
25.Associate covariant and contravariant vectors38
26.Inclination of two vectors.Orthogonal vectors39
27.Coordinate hypersurfaces.Coordinate curves40
28.Field of normals to a hypersurface42
29.N-ply orthogonal system of hypersurfaces44
30.Congruences of curves.Orthogonal ennuples45
31.Principal directions for a symmetric covariant tensor of the second order47
32.Euclidean space of n dimensions50
EXAMPLES Ⅲ53
Chapter Ⅳ CHRISTOFFEL'S THREE-INDEX SYMBOLS.COVARIANT DIFFERENTIATION55
33.The Christoffel symbols55
34.Second derivatives of the x's with respect to the ?'s56
35.Covariant derivative of a covariant vector.Curl of a vector58
36.Covariant derivative of a contravariant vector60
37.Derived vector in a given direction61
38.Covariant differentiation of tensors62
39.Covariant differentiation of sums and products64
40.Divergence of a vector65
41.Laplacian of a scalar invariant67
EXAMPLES Ⅳ68
Chapter Ⅴ CURVATURE OF A CURVE.GEODESICS.PARALLELISM OF VECTORS72
42.Curvature of a curve.Principal normal72
43.Geodesics.Euler's conditions73
44.Differential equations of geodesics75
45.Geodesic coordinates76
46.Riemannian coordinates79
47.Geodesic form of the linear element80
48.Geodesics in Euclidean space.Straight lines83
49.Parallel displacement of a vector of constant magnitude85
50.Parallelism for a vector of variable magnitude87
51.Subspaces of a Riemannian manifold89
52.Parallelism in a subspace91
53.Tendency and divergence of vectors with respect to subspace or enveloping space93
EXAMPLES Ⅴ95
Chapter Ⅵ CONGRUENCES AND ORTHOGONAL ENNUPLES98
54.Ricci's coefficients of rotation98
55.Curvature of a congruence.Geodesic congruences99
56.Commutation formula for the second derivatives along the arcs of the ennuple100
57.Reason for the name"Coefficients of Rotation"101
58.Conditions that a congruence be normal102
59.Curl of a congruence104
60.Congruences canonical with respect to a given congruence105
EXAMPLES Ⅵ109
Chapter Ⅶ RIEMANN SYMBOLS.CURVATURE OF A RIEMANNIAN SPACE110
61.Curvature tensor and Ricci tensor110
62.Covariant curvature tensor111
63.The identity of Bianchi113
64.Riemannian curvature of a Vn113
65.Formula for Riemannian curvature116
66.Theorem of Schur117
67.Mean curvature of a space for a given direction118
EXAMPLES Ⅶ121
Chapter Ⅷ HYPERSURFACES123
68.Notation.Unit normal123
69.Generalisod covariant differentiation124
70.Gauss's formulae.Second fundamental form126
71.Curvature of a curve in a hypersurface.Normal curvature128
72.Generalisation of Dupin's theorem130
73.Principal normal curvatures.Lines of curvature132
74.Conjugate directions and asymptotic directions in a hypersurface133
75.Tensor derivative of the unit normal.Derived vector135
76.The equations of Gauss and Codazzi138
77.Hypersurfaces with indeterminate lines of curvature.Totally geodesic hypersurfaces139
78.Family of hypersurfaces139
EXAMPLES Ⅷ141
Chapter Ⅸ HYPERSURFACES IN EUCLIDEAN SPACE.SPACES OF CONSTANT CURVATURE143
Euclidean Space143
79.Hyperplanes143
80.Hyperspheres144
81.Central quadric hypersurfaces146
82.Reciprocal quadrie hypersurfaces148
83.Conjugate radii149
84.An application151
85.Any hypersurface in Euclidean space152
86.Riemannian curvature.Ricci principal directions153
87.Evolute of a hypersurface in Euclidean space155
Spaces of Constant Curvature156
88.Riemannian curvature of a hypersphere156
89.Geodesics in a space of positive constant curvature158
EXAMPLES Ⅸ159
Chapter Ⅹ SUBSPACES OF A RIEMANNIAN SPACE162
90.Unit normals.Gauss's formulae162
91.Change from one set of normals to another163
92.Curvature of a curve in a subspace164
93.Conjugate and asymptotic directions in a subspace166
94.Generalisation of Dupin's theorem167
95.Derived vector of a unit normal169
96.Lines of curvature for a given normal171
EXAMPLES Ⅹ171
HISTORICAL NOTE173
BIBLIOGRAPHY180
INDEX188
热门推荐
- 2472976.html
- 3458410.html
- 962658.html
- 2962526.html
- 1789849.html
- 1821064.html
- 3391407.html
- 3211616.html
- 1400166.html
- 923178.html
- http://www.ickdjs.cc/book_1792883.html
- http://www.ickdjs.cc/book_3187071.html
- http://www.ickdjs.cc/book_1965152.html
- http://www.ickdjs.cc/book_2108960.html
- http://www.ickdjs.cc/book_1547023.html
- http://www.ickdjs.cc/book_77048.html
- http://www.ickdjs.cc/book_2540777.html
- http://www.ickdjs.cc/book_2129561.html
- http://www.ickdjs.cc/book_2093632.html
- http://www.ickdjs.cc/book_2193705.html