图书介绍

微分流形与黎曼几何 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

微分流形与黎曼几何 英文版
  • (美) WilliamM.Boothby著 著
  • 出版社: 人民邮电出版社
  • ISBN:9787115165992
  • 出版时间:2007
  • 标注页数:419页
  • 文件大小:99MB
  • 文件页数:40212053页
  • 主题词:可微分流形-教材-英文;黎曼几何-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

微分流形与黎曼几何 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ.Introduction to Manifolds1

1.Preliminary Comments on Rn1

2.Rn and Euclidean Space4

3.Topological Manifolds6

4.Further Examples of Manifolds Cutting and Pasting11

5.Abstract Manifolds Some Examples14

Ⅱ.Functions of Several Variables and Mappings20

1.Differentiability for Functions of Several Variables20

2.Differentiability of Mappings and Jacobians25

3.The Space of Tangent Vectors at a Point of Rn29

4.Another Definition of Ta (Rn)32

5.Vector Fields on Open Subsets of Rn36

6.The Inverse Function Theorem41

7.The Rank of a Mapping46

Ⅲ.Differentiable Manifolds and Submanifolds52

1.The Definition of a Differentiable Manifold52

2.Further Examples59

3.Differentiable Functions and Mappings65

4.Rank of a Mapping, Immersions68

5.Submanifolds74

6.Lie Groups80

7.The Action of a Lie Group on a Manifold Transformation Groups87

8.The Action of a Discrete Group on a Manifold93

9.Covering Manifolds98

Ⅳ Vector Fields on a Manifold104

1.The Tangent Space at a Point of a Manifold104

2.Vector Fields113

3.One-Parameter and Local One-Parameter Groups Acting on a Manifold119

4.The Existence Theorem for Ordinary Differential Equations127

5.Some Examples of One-Parameter Groups Acting on a Manifold135

6.One-Parameter Subgroups of Lie Groups142

7.The Lie Algebra of Vector Fields on a Manifold146

8.Frobenius’s Theorem153

9.Homogeneous Spaces160

Ⅴ Tensors and Tensor Fields on Manifolds171

1.Tangent Covectors171

Covectors on Manifolds172

Covector Fields and Mappings174

2.Bilinear Forms.The Riemannian Metric177

3.Riemannian Manifolds as Metric Spaces181

4.Partitions of Unity186

Some Applications of the Partition of Unity188

5.Tensor Fields192

Tensors on a Vector Space192

Tensor Fields194

Mappings and Covariant Tensors195

The Symmetrizing and Alternating Transformations196

6.Multiplication of Tensors199

Multiplication of Tensors on a Vector Space199

Multiplication of Tensor Fields201

Exterior Multiplication of Alternating Tensors202

The Exterior Algebra on Manifolds206

7.Orientation of Manifolds and the Volume Element207

8.Exterior Differentiation212

An Application to Frobenius’s Theorem216

Ⅵ.Integration on Manifolds223

1.Integration in Rn Domains of Integration223

Basic Properties of the Riemann Integral224

2.A Generalization to Manifolds229

Integration on Riemannian Manifolds232

3.Integration on Lie Groups237

4.Manifolds with Boundary243

5.Stokes’s Theorem for Manifolds251

6.Homotopy of Mappings.The Fundamental Group258

Homotopy of Paths and Loops.The Fundamental Group259

7.Some Applications of Differential Forms.The de Rham Groups265

The Homotopy Operator268

8.Some Further Applications of de Rham Groups272

The de Rham Groups of Lie Groups276

9.Covering Spaces and Fundamental Group280

Ⅶ.Differentiation on Riemannian Manifolds289

1.Differentiation of Vector Fields along Curves in Rn289

The Geometry of Space Curves292

Curvature of Plane Curves296

2.Differentiation of Vector Fields on Submanifolds of Rn298

Formulas for Covariant Derivatives303

?xp Y and Differentiation of Vector Fields305

3.Differentiation on Riemannian Manifolds308

Constant Vector Fields and Parallel Displacement314

4.Addenda to the Theory of Differentiation on a Manifold316

The Curvature Tensor316

The Riemannian Connection and Exterior Differential Forms319

5.Geodesic Curves on Riemannian Manifolds321

6.The Tangent Bundle and Exponential Mapping.Normal Coordinates326

7.Some Further Properties of Geodesics332

8.Symmetric Riemannian Manifolds340

9.Some Examples346

Ⅷ.Curvature355

1.The Geometry of Surfaces in E3355

The Principal Curvatures at a Point of a Surface359

2.The Gaussian and Mean Curvatures of a Surface363

The Theorema Egregium of Gauss366

3.Basic Properties of the Riemann Curvature Tensor371

4.Curvature Forms and the Equations of Structure378

5.Differentiation of Covariant Tensor Fields384

6.Manifolds of Constant Curvature391

Spaces of Positive Curvature394

Spaces of Zero Curvature396

Spaces of Constant Negative Curvature397

REFERENCES403

INDEX411

热门推荐