图书介绍

人工神经网络原理及其应用2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

人工神经网络原理及其应用
  • 陈允平等编著 著
  • 出版社: 北京:中国电力出版社
  • ISBN:750831025X
  • 出版时间:2002
  • 标注页数:232页
  • 文件大小:7MB
  • 文件页数:245页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

人工神经网络原理及其应用PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 绪论1

1.1 人脑信息处理的特点1

1.2 人工神经网络发展简史3

1.3 人工神经网络的现状与前景4

2 人工神经网络的基本原理与算法6

2.1 生物神经元6

2.2 人工神经元7

2.3 简单神经元的学习10

2.4 单层感知器的局限性15

3 多层人工神经网络(多层感知器)17

3.1 引言17

3.2 多层人工神经网络的学习规则19

3.3 用多层人工神经网络解决异或问题24

3.4 用作分类器的多层人工神经网络26

3.5 人工神经网络的归纳能力与容错能力31

3.6 人工神经网络学习中存在的困难及其对策32

4 Kohonen 自组织网络34

4.1 引言34

4.2 Kohonen 算法36

4.3 权重的调整38

4.4 相邻单元39

4.5 学习矢量的量化42

5 Hopfield 网络43

5.1 引言44

5.2 模式的存储与调用46

6.1.1 引言50

6 负荷预报及网损计算的人工神经网络方法50

6.1 短期负荷预报的人工神经网络方法50

6.1.2 负荷分类与负荷特征52

6.1.3 人工神经网络53

6.1.4 反传算法的负荷预报56

6.1.5 结论65

6.2 自适应线性神经网络在负荷预报上的应用66

6.2.1 引言66

6.2.2 基本思路67

6.2.3 功率谱分析和负荷的分解68

6.2.4 自适应神经元72

6.2.5 负荷分量的预报75

6.2.6 模拟计算结果与结果评价78

6.2.7 小结81

6.3 网损计算的人工神经元方法82

6.3.1 引言82

6.3.2 基本方法83

6.3.3 实际计算结果88

7 电力系统稳定分析的人工神经网络方法93

7.1 人工神经网络技术为基础的电力系统动态稳定分析94

7.1.1 引言94

7.1.2 矩阵法的基本思想95

7.1.3 自组织特征映射算法(SOFM)97

7.1.4 Kohonen 模型在电力系统动态稳定中的应用102

7.1.5 模拟结果104

7.2.1 引言111

7.2 人工神经网络为基础的多机电力系统稳定器111

7.2.2 以人工神经网络为基础的 PSS112

7.2.3 多机系统中的 ANN PSS115

7.2.4 小结123

7.3 调整电力系统稳定器的人工神经网络方法123

7.3.1 引言123

7.3.2 问题的提法125

7.3.3 人工神经网络的设计127

7.3.4 人工神经网络在 PSS 参数调整中的应用130

7.4 人工神经网络在同步电机动态稳定分析中的应用136

7.4.1 问题的提出137

7.4.2 发电机动态稳定分析的神经网络方法140

8.1.1 引言145

8 电力系统辨识与测量的人工神经网络方法145

8.1 无功功率测量的人工神经网络方法145

8.1.2 电弧炉模型146

8.1.3 问题的提法147

8.1.4 误差反传神经网络152

8.1.5 通过神经网络计算瞬时无功功率153

8.1.6 结果155

8.2 电压与电流波形实时识别的人工神经网络方法159

8.2.1 引言159

8.2.2 问题的提法159

8.2.3 L?模(切比雪夫模)判据161

8.2.4 最小二乘法和最小绝对值法判据164

8.2.6 结论165

8.2.5 计算机模拟试验165

8.3 检测高阻故障的人工神经网络方法169

8.3.1 引言169

8.3.2 人工神经网络的结构、算法与数据处理170

8.3.3 故障检测器的实现174

8.3.4 小结179

8.4 汽轮发电机转子匝间短路定位的模糊人工神经网络方法179

8.4.1 引言179

8.4.2 测量系统180

8.4.3 模糊神经网络182

8.4.4 现场试验183

8.4.5 小结186

8.5 电力系统谐波源的监控与辨识186

8.5.1 谐波状态估计187

8.5.2 模拟试验188

9 人工神经网络与其他学科的联合应用197

9.1 互联系统暂态稳定分析的人工神经网络与模式识别交互方法197

9.1.1 以模式识别为基础的安全性转移功率极限计算198

9.1.2 神经网络为基础的负荷预报方法说明208

9.1.3 小结210

9.2 配电线电容器调度的人工神经网络与动态规划方法的联合应用211

9.2.1 引言211

9.2.2 用动态规划法的配电线电容器调度213

9.2.3 用欧几里得方法和自组织神经网络方法的分块218

9.2.4 数值结果222

9.2.5 讨论与结论228

后记230

参考文献231

热门推荐