图书介绍
高等数学 英文 上 第2版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 北京邮电大学高等数学双语教学组编 著
- 出版社: 北京:北京邮电大学出版社
- ISBN:9787563552726
- 出版时间:2017
- 标注页数:303页
- 文件大小:5MB
- 文件页数:314页
- 主题词:高等数学-高等学校-教材-英文
PDF下载
下载说明
高等数学 英文 上 第2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Fundamental Knowledge of Calculus1
1.1 Mappings and Functions1
1.1.1 Sets and Their Operations1
1.1.2 Mappings and Functions6
1.1.3 Elementary Properties of Functions11
1.1.4 Composite Functions and Inverse Functions14
1.1.5 Basic Elementary Functions and Elementary Functions16
Exercises 1.1 A23
Exercises 1.1 B25
1.2 Limits of Sequences26
1.2.1 The Definition of Limit of a Sequence26
1.2.2 Properties of Limits of Sequences31
1.2.3 Operations of Limits of Sequences35
1.2.4 Some Criteria for Existence of the Limit of a Sequence38
Exercises 1.2 A44
Exercises 1.2 B46
1.3 The Limit of a Function46
1.3.1 Concept of the Limit of a Function47
1.3.2 Properties and Operations of Limits for Functions53
1.3.3 Two Important Limits of Functions58
Exercises 1.3A61
Exercises 1.3 B63
1.4 Infinitesimal and Infinite Quantities63
1.4.1 Infinitesimal Quantities63
1.4.2 Infinite Quantities65
1.4.3 The Order of Infinitesimals and Infinite Quantities67
Exercises 1.4 A71
Exercises 1.4 B73
1.5 Continuous Functions73
1.5.1 Continuity of Functions74
1.5.2 Properties and Operations of Continuous Functions76
1.5.3 Continuity of Elementary Functions78
1.5.4 Discontinuous Points and Their Classification80
1.5.5 Properties of Continuous Functions on a Closed Interval83
Exercises 1.5 A87
Exercises 1.5 B89
Chapter 2 Derivative and Differential91
2.1 Concept of Derivatives91
2.1.1 Introductory Examples91
2.1.2 Definition of Derivatives92
2.1.3 Geometric Meaning of the Derivative96
2.1.4 Relationship between Derivability and Continuity96
Exercises 2.1 A98
Exercises 2.1 B99
2.2 Rules of Finding Derivatives99
2.2.1 Derivation Rules of Rational()perations100
2.2.2 Derivation Rules of Composite Functions101
2.2.3 Derivative of Inverse Functions103
2.2.4 Derivation Formulas of Fundamental Elementary Functions104
Exercises 2.2 A105
Exereises 2.2 B107
2.3 Higher Order Derivatives107
Exercises 2.3 A110
Exercises 2.3 B111
2.4 Derivation of Implicit Functions and Parametric Equations,Related Rates111
2.4.1 Derivation of Implicit Functions111
2.4.2 Derivation of Parametric Equations114
2.4.3 Related Rates118
Exercises 2.4 A120
Exercises 2.4 B122
2.5 Differential of the Function123
2.5.1 Concept of the Differential123
2.5.2 Geometric Meaning of the Differential125
2.5.3 Differential Rules of Elementary Functions126
2.5.4 Differential in Linear Approximate Computation127
Exercises 2.5128
Chapter 3 The Mean Value Theorem and Applications of Derivatives130
3.1 The Mean Value Theorem130
3.1.1 Rolle's Theorem130
3.1.2 Lagrange's Theorem132
3.1.3 Cauchy's Theorem135
Exercises 3.1 A137
Exercises 3.1 B138
3.2 L'Hospital's Rule138
Exercises 3.2 A144
Exercises 3.2 B145
3.3 Taylor's Theorem145
3.3.1 Taylor's Theorem145
3.3.2 Applications of Taylor's Theorem149
Exercises 3.3 A150
Exercises 3.3 B151
3.4 Monotonicity,Extreme Values,Global Maxima and Minima of Functions151
3.4.1 Monotonicity of Functions151
3.4.2 Extreme Values153
3.4.3 Global Maxima and Minima and Its Application156
Exercises 3.4 A158
Exercises 3.4 B160
3.5 Convexity of Functions,Inflections160
Exercises 3.5 A165
Exercises 3.5 B166
3.6 Asymptotes and Graphing Functions166
Exercises 3.6170
Chapter 4 Indefinite Integrals172
4.1 Concepts and Properties of Indefinite Integrals172
4.1.1 Antiderivatives and Indefinite Integrals172
4.1.2 Formulas for Indefinite Integrals174
4.1.3Operation Rules of Indefinite Integrals175
Exercises 4.1 A176
Exercises 4.1 B177
4.2 Integration by Substitution177
4.2.1 Integration by the First Substitution177
4.2.2 Integration by the Second Substitution181
Exercises 4.2 A184
Exercises 4.2 B186
4.3 Integration by Parts186
Exercises 4.3 A193
Exercises 4.3 B194
4.4 Integration of Rational Functions194
4.4.1 Rational Functions and Partial Fractions194
4.4.2 Integration of Rational Fractions197
4.4.3 Antiderivatives Not Expressed by Elementary Functions201
Exercises 4.4201
Chapter 5 Definite Integrals202
5.1 Concepts and Properties of Definite Integrals202
5.1.1 Instances of Definite Integral Problems202
5.1.2 The Definition of the Definite Integral205
5.1.3 Properties of Definite Integrals208
Exercises 5.1 A213
Exercises 5.1 B214
5.2 The Fundamental Theorems of Calculus215
5.2.1 Fundamental Theorems of Calculus215
5.2.2 Newton-Leibniz Formula for Evaluation of Definite Integrals217
Exercises 5.2 A219
Exercises 5.2 B221
5.3 Integration by Substitution and by Parts in Definite Integrals222
5.3.1 Substitution in Definite Integrals222
5.3.2 Integration by Parts in Definite Integrals225
Exercises 5.3 A226
Exercises 5.3 B228
5.4 Improper Integral229
5.4.1 Integration on an Infinite Interval229
5.4.2 Improper Integrals with Infinite Discontinuities232
Exercises 5.4 A235
Exercises 5.4 B236
5.5 Applications of Definite Integrals237
5.5.1 Method of Setting up Elements of Integration237
5.5.2 The Area of a Plane Region239
5.5.3 The Arc Length of Plane Curves243
5.5.4 The Volume of a Solid by Slicing and Rotation about an Axis247
5.5.5 Applications of Definite Integral in Physics249
Exercises 5.5 A252
Exercises 5.5 B254
Chapter 6 Differential Equations256
6.1 Basic Concepts of Differential Equations256
6.1.1 Examples of Differential Equations256
6.1.2 Basic Concepts258
Exercises 6.1259
6.2 First-Order Differential Equations260
6.2.1 First-Order Separable Differential Equation260
6.2.2 Equations can be Reduced to Equations with Variables Separable262
6.2.3 First-Order Linear Equations266
6.2.4 Bernoulli's Equation269
6.2.5 Some Examples that can be Reduced to First-Order Linear Equations270
Exereises 6.2272
6.3 Reducible Second Order Differential Equations273
Exercises 6.3276
6.4 Higher-Order Linear Differential Equations277
6.4.1 Some Examples of Linear Differential Equation of Higher-Order277
6.4.2 Structure of Solutions of Linear Differential Equations279
Exercises 6.4282
6.5 Linear Equations with Constant Coefficients283
6.5.1 Higher Order Linear Homogeneous Equations with Constant Coefficients283
6.5.2 Higher-Order Linear Nonhomogeneous Equations with Constant Coefficients287
Exercises 6.5294
6.6Euler's Differential Equation295
Exercises 6.6296
6.7 Applications of Differential Equations296
Exercises 6.7301
Bibliography303
热门推荐
- 1832925.html
- 3703971.html
- 3179318.html
- 2322484.html
- 1875869.html
- 1798347.html
- 3235951.html
- 3826013.html
- 2498368.html
- 2819387.html
- http://www.ickdjs.cc/book_3692185.html
- http://www.ickdjs.cc/book_202860.html
- http://www.ickdjs.cc/book_2705196.html
- http://www.ickdjs.cc/book_2648200.html
- http://www.ickdjs.cc/book_3718191.html
- http://www.ickdjs.cc/book_2572313.html
- http://www.ickdjs.cc/book_1403016.html
- http://www.ickdjs.cc/book_3125928.html
- http://www.ickdjs.cc/book_824207.html
- http://www.ickdjs.cc/book_948991.html