图书介绍

冶金工程数学 上2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

冶金工程数学 上
  • 魏季和编著 著
  • 出版社: 北京:冶金工业出版社
  • ISBN:7502401407
  • 出版时间:1988
  • 标注页数:455页
  • 文件大小:11MB
  • 文件页数:467页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

冶金工程数学 上PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

目录1

第一章 场论1

§1-1场的概念1

1-1-1场及其分类1

1-1-2数量场的等值面(线)2

1-1-3矢量场的矢量线2

§1-2数量场的梯度5

1-2-1方向导数5

1-2-2梯度8

§1-3矢量场的散度12

1-3-1流量和通量12

1-3-2通过闭曲面的流量和通量14

1-3-3散度16

1-3-4奥斯特罗格拉特斯基-高斯公式17

§1-4矢量场的旋度23

1-4-1环量(环流)及环量面密度24

1-4-2格林公式和斯托克斯公式25

1-4-3旋度27

1-4-4平面矢量场的旋度30

§1-5几种重要的矢量场31

1-5-1势量场32

1-5-2管量场35

1-5-3调和场36

§1-6哈密尔顿算子及拉普拉斯算子37

1-6-1哈密尔顿算子37

1-6-2拉普拉斯算子39

第二章 传里叶级数及传里叶积分40

§2-1传里叶级数的引进40

§2-2三角函数系的正交性40

§2-3传里叶级数及其收敛性41

2-3-1传里叶级数41

2-3-2传里叶级数的收敛性43

§2-4函数的传里叶展开45

2-4-1函数在〔-π,π〕区间上的传里叶展开45

2-4-2偶函数及奇函数的传里叶展开47

2-4-3函数在任意区间上的传里叶展开49

§2-5传里叶积分57

2-5-1传里叶级数的复指数形式57

2-5-2传里叶积分定理59

2-5-3传里叶积分的复指数形式62

§2-6积分变换64

2-6-1传里叶变换64

2-6-2拉普拉斯变换68

§2-7二重传里叶级数72

2-7-1二元函数在〔-π,π;-π,π〕域上的传里叶展开73

2-7-2二元函数在〔-ι,ι;-h,h〕域上的传里叶展开74

3-1-1典型方程及其分类77

§3-1概述77

第三章 数学物理方程77

3-1-2定解条件与定解问题的提法81

3-1-3线性偏微分方程的解85

§3-2抛物型方程88

3-2-1有界杆中的导热88

3-2-2无界杆中的导热——传里叶解及源函数109

3-2-3半无界杆中的导热118

3-2-4多维问题的传里叶解124

3-2-5冶金应用实例128

3-2-6抛物型方程的积分变换法求解152

§3-3椭圆型方程——拉普拉斯方程168

3-3-1二维稳态导热问题的传里叶解168

3-3-2圆内狄里赫莱问题的传里叶解173

§3-4双曲型方程177

3-4-1无界弦的自由振动——达朗倍尔解177

3-4-2有界弦的自由振动——传里叶解180

3-4-3有界弦的强迫振动184

第四章 线性代数195

§4-1行列式和线性代数方程组195

4-1-1n阶行列式及其性质195

4-1-2线性代数方程组205

§4-2矢量和矩阵209

4-2-1n维矢量209

4-2-2矢量系的线性相关性212

4-2-3矩阵214

§4-3线性代数方程组的求解257

4-3-1线性代数方程组的相容性257

4-3-2逆矩阵法——克莱姆规则的矩阵形式260

4-3-3消去法262

4-3-4迭代法270

4-3-5求解三对角线性方程组的追赶法288

4-3-6求解对称正定线性方程组的平方根法290

第五章 计算方法294

§5-1误差294

5-1-1误差来源294

5-1-2误差和误差限,有效数字295

5-1-3相对误差和相对误差限296

5-1-4误差的传播——和、差、积、商及函数的误差和相对误差297

§5-2高次代数方程的求解300

5-2-1引言300

5-2-2二分法301

5-2-3迭代法303

5-2-4牛顿法306

5-2-5弦截法314

§5-3函数插值318

5-3-1引言318

5-3-2线性插值与二次插值319

5-3-3均差和均差插值,插值余项323

5-3-4拉格朗日插值公式330

5-3-5差分和等距结点插值332

5-3-6数值微分338

§5-4数值积分342

5-4-1梯形求积公式342

5-4-2辛普生法344

5-4-3柯特斯法及罗姆伯格公式346

5-4-4高斯求积法350

§5-5常微分方程的数值解法355

5-5-1引言355

5-5-2梯形法则及预测—校正公式357

5-5-3龙格-库塔法362

5-5-4步长的选择及稳定性问题368

5-5-5一阶常微分方程组的数值解372

§5-6偏微分方程的数值解法375

5-6-1抛物型方程的差分解法376

5-6-2椭圆型方程的差分解法394

5-6-3双曲型方程的差分解法398

附录Ⅰ 梯度、散度、旋度及调和量在柱坐标系和球坐标系中的表示式400

附录Ⅱ 传里叶变换和拉普拉斯变换表403

附录Ⅲ 几个特殊函数415

1.Γ函数及Γ函数表415

2.в函数418

3.贝塞尔(柱)函数及其数值表421

4.勒让德函数444

附录Ⅳ 误差函数表449

附录V 某些超越方程的根451

表V-1atga=C或ctga=a/C(C>0)的头六个根αn451

表V-2Ctga+a=0或actga+C=0(C>-1)的头六个根αn452

表V-3aJ1(α)-CJ0(α)=0的头六个根αn453

表V-4Jo(α)No(α)-No(α)Jo(ka)=0的头五个根αn455

热门推荐